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Phase-field modeling of microstructural pattern formation during directional solidification
of peritectic alloys without morphological instability
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During the directional solidification of peritectic alloys, two stable solid phases~parent and peritectic! grow
competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent
or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio
(G/vp), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array
structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In
contrast, whenG/vp is large enough for both phases to be morphologically stable, the formation of the
microstructure becomes controlled by a subtle interplay between the nucleation and growth of the two solid
phases. The structures that have been observed in this regime~in small samples where convection effects are
suppressed! include alternate layers~bands! of the parent and peritectic phases perpendicular to the growth
direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as
proposed in a recent model@R. Trivedi, Metall. Mater. Trans. A26, 1 ~1995!#, as well as partially filled bands
~islands!, where the peritectic phase does not fully cover the parent phase which grows continuously. We
develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to
explore the formation of these structures. Simulations of this model shed light on the morphology transition
from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following
nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth
morphology that one might expect to observe in large samples under purely diffusive growth conditions.

DOI: 10.1103/PhysRevE.63.031504 PACS number~s!: 64.70.Dv, 81.30.Fb, 05.70.Ln
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I. INTRODUCTION

The spontaneous emergence of complex microstruct
patterns during the solidification of alloys is a subject of bo
fundamental and applied interest@1#. During directional so-
lidification, a sample is pulled in an externally imposed te
perature gradientG with a fixed pulling speedvp . This setup
has been used extensively in fundamental studies of soli
cation patterns because it allows one to study their forma
under well-controlled growth conditions. Depending on t
type of alloy and the ratioG/vp , various patterns are pos
sible. During monophase solidification of a dilute binary
loy, solute redistribution leads to a well-known morpholog
cal instability ~Mullins-Sekerka instability @2#! below a
critical ratio G/vp , and cellular or dendritic patterns ar
typically formed. For nondilute alloy concentrations close
a eutectic point, two stable solid phases of different com
sitions can grow from a metastable liquid. In this case,
two phases cooperate and form lamellae or rods paralle
the growth direction~coupled growth!. For off-eutectic com-
positions, coexistence between dendrites and coupled gro
structures is also observed.

Much less is known about microstructural pattern form
tion in peritectic growth@1#, despite the fact that many in
dustrially important metallic alloy systems as well as cera
ics such as the high-Tc superconductor YBCO are
peritectics. A schematic phase diagram of a peritecticAB
alloy ~whereB will be called the impurity for convenience!
1063-651X/2001/63~3!/031504~15!/$15.00 63 0315
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is shown in Fig. 1. It contains a peritectic point, analogous
the eutectic point, at which two different solid phases,
parent~primary ora! and peritectic~secondary orb! phases,
coexist with a liquid of higher composition than either so

FIG. 1. Schematic phase diagram of a peritectic alloy.C, con-
centration of impurityB; Tm , melting point of pureA; Tp , peritec-
tic temperature.Cp , Cpb , and Cpa are the compositions of the
liquid, b solid, anda solid that are in equilibrium atTp . DTN

a and
DTN

b are the nucleation undercoolings fora andb phases, respec
tively. Dashed lines are metastable extensions of the liquidus
solidus lines.
©2001 The American Physical Society04-1
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phase. Above the peritectic temperatureTp , the parent phase
is stable and the peritectic phase is metastable, wherea
low Tp , the opposite is true. For comparison, in a eutec
both solid phases are stable below the eutectic tempera
and metastable above, and the impurity concentration in
liquid falls in between the concentrations of the two so
phases. For a sufficiently lowG/vp ratio, a dendritic array
structure of the parentor the peritectic phase is typicall
observed, and which of these two phases is selected dep
on the alloy composition andG/vp @3#. In contrast, for a high
G/vp ratio morphological instability is suppressed. In th
case, banded structures made up of alternating layers of
mary and peritectic phases perpendicular to the growth
rection are formed. These structures have by now been
served in various peritectic systems, including Sn-Cd@4,5#,
Sn-Sb@6#, Zn-Cu@6#, Ag-Zn @7#, and Pb-Bi@8,9#. It is worth
noting that eutecticlike coupled growth structures, which
quite distinct from banded structures, have recently been
served in the Fe-Ni system@10#. Whether stable coupled
growth is theoretically possible during peritectic growth h
remained an open question for quite some time@4#, and we
will address this issue elsewhere. Here, we focus prima
on banded structure formation and phenomena assoc
with the dynamical spreading of one solid phase onto
other.

Recently, Trivedi has introduced a one-dimensional~1D!
model @11# to explain the formation of peritectic bande
structures for purely diffusion-controlled growth. The co
ceptual banding cycle assumed in this model is as follo
Consider a melt with homogeneous compositionC`,Cp be-
ing solidified starting from a flata-liquid interface in equi-
librium. The rejection of impuritiesB into the liquid during
solidification leads to the buildup of a solutal boundary lay
As a result, the interface temperature decreases, follow
the liquidus curve in the phase diagram. IfC` is large
enough, the interface temperature eventually falls sufficie
belowTp for the peritectic phase to nucleate heterogeneou
at the solid-liquid interface before the growth of thea phase
has reached its steady state. The newly nucleatedb phase
rejects fewer impurities than thea phase. Consequently, th
magnitude of the solutal boundary layer decreases and
interface temperature increases, following now theb-liquid
coexistence line in the phase diagram. IfC` is low enough,
such that the corresponding interfacial temperature is s
ciently higher thanTp , the a solid may renucleate agai
before the steady state is reached, and the cycle rep
Therefore, this model predicts that bands can form o
when the composition falls inside a narrow window in t
hypoperitectic region (Cpa,C`,Cpb) whose width de-
pends on the nucleation undercoolingsDTN

a andDTN
b .

The first attempts to validate this prediction experime
tally yielded contradictory results. Directional solidificatio
experiments with Pb-Bi and Sn-Cd alloys seemed to sh
that bands also form in the hyperperitectic region (Cpb
,C`,Cp), in apparent contradiction with this predictio
An attempt was made to resolve this ‘‘composition ran
paradox’’ by incorporating convection effects@12#, assuming
the existence of a fully mixed liquid of uniform compositio
outside a purely diffusive 1D boundary layer of finite thic
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ness. This model, however, yielded a banding cycle and b
spacings that are inconsistent with experimental results, h
ing that this boundary-layer approximation~typically valid
for strong convection! is inadequate to describe these expe
ments. Around the same time, careful serial sectioning
solidified Pb-Bi and Sn-Cd alloys revealed that the see
ingly banded structures are actually oscillatory treelike str
tures connected in three dimensions@13#, and not discrete
bands, thereby resolving experimentally this composit
range paradox. Following this finding, a more accur
model was developed that assumes a planar solidifica
front, but incorporates a fully two-dimensional convectio
flow field @14#. This model successfully reproduced the o
served oscillatory structures.

Following these studies, experiments were conducted
thin tubes to reduce convection@13#. For tube diameters
smaller than 1 mm, truly discrete bands indeed became
servable inside a narrow composition range predicted by
1D diffusive growth model. Surprisingly, however, it wa
also observed that when the tube diameter was further
duced, ‘‘islands’’ of theb phase formed inside the matrix o
thea phase, instead of discrete bands. This observation
gests that there is a microstructural transition from band
islands if the system size is reduced. It was also obser
that islands tend to form more easily for initial compositio
closer toCpa . In addition, some spatially chaotic pattern
were observed in some experiments. The formation of th
structures is controlled by a subtle interplay between
nucleation process and the competition between the gro
of the nuclei and the preexisting phase. In this respect,
one-dimensional model may not always be adequate to
scribe this competition because it assumes an infinite spr
ing speed for the newly nucleated phase. Moreover, the
convection model assumes a flat interface and is hence
well suited to simulate heterogeneous nucleation and spr
ing. In order to model accurately the formation of these d
ferent structures, a truly 2D model of interface evolution
necessary. The particular difficulty of this problem is that t
microstructure formation is controlled by an interplay b
tween nucleation and growth of the different phases.
steady-state growth mode exists, which makes the wh
problem explicitly time dependent.

In this paper, we use a phase-field approach@15–22# to
investigate the formation of this class of banded microstr
tures in a purely diffusive regime and a 2D geometry. T
phase-field method eliminates the need of explicit fro
tracking and thus greatly simplifies the task of numerica
solving the equations of peritectic solidification that invol
three-phase junctions. A phase-field model for peritec
growth has recently been proposed@23#. Here, we use an
alternative model that is closer to the eutectic model
Wheeleret al. @22#.

We first investigate the spreading of the peritectic ph
on the primary phase after a single nucleation event.
characterize in detail the dynamics of the three-phase ju
tion during spreading and find a morphological transiti
from discrete bands ofa andb phases to isolated islands o
b phase when the system size is decreased, in qualita
agreement with experiments. Moreover, our simulations
4-2
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PHASE-FIELD MODELING OF MICROSTRUCTURAL . . . PHYSICAL REVIEW E 63 031504
able us to understand physically the basic mechanism
underlies this transition. We then investigate the effect
multiple nucleations on microstructure formation in lar
systems by supplementing the phase-field equations wi
phenomenological stochastic nucleation law.

The remainder of this article is organized as follows.
Sec. II, we write down the sharp-interface and phase-fi
models. Section III is devoted to the study of the equilibriu
properties of the phase-field model and Sec. IV describes
simulation method. Results are presented in Sec. V, follow
by a summary and conclusions in Sec. VI.

II. MODEL

A. Sharp-interface model

The sharp-interface equations are given by

] tC5DL¹2C, ~1!

vn~CL2Cn!52DL]nCL , ~2!

T5Tp1mn~CL2Cp!2GnK2
1

mn
vn , ~3!

where C denotes the concentration of impurityB, and the
subscriptn labels the solida andb phases. Equation~1! is
the diffusion equation for the solute in the liquid with th
solute diffusivityDL . We have assumed that diffusion in th
solid is negligible~one-sided model!. Equation~2! expresses
the mass conservation at the moving interface, withvn and
]n denoting the normal velocity of the interface and the d
rivative normal to the interface, respectively. Finally, Eq.~3!
is the Gibbs-Thomson condition at the solid-liquid interfac
with K, mn , mn andGn being the interface curvature, liqu
dus slope, kinetic coefficient, and Gibbs-Thomson cons
of phasen, respectively. The Gibbs-Thomson constantsGn

are defined by

Gn5
gnLTp

Ln
, ~4!

wheregnL is the surface energy of then-liquid interface and
Ln is the latent heat of fusion for phasen, both taken at the
peritectic temperature. Young’s condition

gaLtaL1gbLtbL1gabtab50 ~5!

must be satisfied at the trijunction points where three pha
meet, wheretmn is the unit vector parallel to them-n inter-
face and pointing away from the trijunction.

B. Phase-field model

To distinguish between the three possible phases~liquid,
a solid, andb solid!, we follow a similar approach to that o
Wheeleret al. @22# for eutectic solidification by introducing
two nonconserved order parameters~phase fields! f andc.
The first distinguishes between solid (f51) and liquid (f
521), the second between thea solid (c51) and theb
solid (c521). The solid-liquid interface is defined by th
03150
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level curvef50, and the interface between the solida and
b phases is defined by the level curvec50 when f is
positive. One important difference from Ref.@22# is that in
our modelc takes the well-defined valuec50 in the liquid.
This modification is necessary because, in the model
Wheeler et al., the equation of motion forc becomes a
simple diffusion equation in the liquid. This introduces a
undesirable new time scale in dynamical simulations tha
removed in the present approach.

As a third dynamical variable we need the compositionC,
which is a conserved field. We define the scaled composi

c~r ,t !5@C~r ,t !2Cpb#/DCa , ~6!

whereDCn5(Cp2Cpn), n5a,b, is the concentration jump
at then-liquid interface atTp .

In terms of these quantities, the equations of motion t
govern the dynamics of the system are given by

tf

]f

]t
52

dF

df
, ~7!

tc

]c

]t
52

dF

dc
, ~8!

]c

]t
5“•FM ~f!“

dF

dc G , ~9!

whereF is the dimensionless free energy of the system~i.e.,
the Helmholtz free energy, divided by the product of t
system size and a typical value of the free energy density
sets the physical energy scale!, M (f) is the mobility of the
impurities, andtf andtc are ~fast! relaxation times for the
phase fields. These equations are of the standard variat
form known from out-of-equilibrium thermodynamics. No
that, sincedF/dc is the local chemical potentialm, Eq.~9! is
simply the continuity equation for the impurity concentratio
with the mass currentJ given by

J52M ~f!“m. ~10!

If there are no fluxes across the boundary of the volu
whereF is defined,dF/dt<0 and Eqs.~7!–~9! imply that
the dynamics drives the system toward a minimum of f
energy.

The free energy functional of the system is assumed to
of the form

F5E $ 1
2 Wf

2 u“fu21 1
2 Wc

2 u“cu21 f ~f,c,c!%dr . ~11!

Since F, f, and c are dimensionless, the coefficientsWf
and Wc have the dimension of length: they determine t
width of the diffuse interfaces. The form of the free ener
density is chosen such that there are two minima atc561
corresponding to thea (1) and b (2) phases forf
511. There is a single minimum in the liquid correspon
ing to f521 andc50, and f (f,c,c) has a single mini-
mum as a function ofc for fixed values off and c corre-
4-3
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TAK SHING LO, ALAIN KARMA, AND MATHIS PLAPP PHYSICAL REVIEW E 63 031504
sponding to the three equilibrium phases. A convenient w
to match these requirements is to construct a free en
density of the form

f ~f,c,c!5
l

2
$c1A1h~f!1 1

2 A2@11h~f!#h~c!%2

2l$B1h~f!1 1
2 B2@11h~f!#h~c!%1g~f!

1 1
2 @11h~f!#g~c!1 1

2 @12h~f!#c2. ~12!

Here,l is a positive constant, andA1 , A2 , B1, andB2 are
functions of temperature. The functiong is a double-well
potential with minima at61, and the functionh must satisfy
h(61)561 andh8(61)50 in order to keep the minima o
f at constant values off andc, independent of the value o
c. We take

g~f!51/42f2/21f4/4, ~13!

h~f!53~f2f3/3!/2. ~14!

The functionsg(c) and h(c) are similarly defined. It fol-
lows trivially from Eq. ~12! that the bulk phase free energ
densities are given by

f L[ f ~21,0,c!5
l

2
~c2A1!21lB1 , ~15!

f a[ f ~1,1,c!5
l

2
~c1A11A2!22l~B11B2!, ~16!

f b[ f ~1,21,c!5
l

2
~c1A12A2!22l~B12B2!. ~17!

For the mobility functionM (f), we take

M ~f!5
DL

2l
~12f!. ~18!

With this choice, the diffusion coefficient of the impurity is
constant equal toDL in the liquid and zero in both solids
which corresponds to the so-called one-sided model. A s
dard asymptotic analysis of the sharp-interface limit of
present phase-field model@24# shows that Eqs.~7!–~9! re-
duce as expected to Eqs.~1!–~3!. The relation between the
parameters in the two sets of equations is given in the n
section.

III. PHASE DIAGRAM AND EQUILIBRIUM PROPERTIES

By applying the well-known common tangent constru
tion to the bulk free energy densities given by Eqs.~15!–
~17!, we can construct the equilibrium phase diagram of
phase-field model. The equilibrium compositions can be
pressed in terms of the temperature-dependent functionsA1 ,
A2 , B1, andB2 ~see the Appendix!. However, since there ar
only four functions, we can at most fit four lines out of six
the phase diagram~i.e., three pairs corresponding t
a-liquid, b-liquid, anda-b coexistence!. We may choose to
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construct, say, the two liquidus lines and the two solid
lines and leave the two solid-solid coexistence curves de
mined by Eq.~A3! and Eq.~A4!. Since we are intereste
only in the behavior of the system at temperatures close
Tp , we assume for simplicity that the liquidus and solid
lines are straight, and that the concentration jumps at
solid-liquid interface are constant~liquidus and solidus are
parallel!. We can then chooseA1 andA2 as constants andB1
and B2 as linear functions of the temperature. The cor
sponding expressions for the functionsA1 , A2 , B1, andB2
are given in the Appendix expressed in terms of the dim
sionless temperature field

T̃5
~T2Tp!

umauDCa
, ~19!

which is a measure of the temperature relative toTp normal-
ized by the freezing range of thea phase.

In the present model, there exists a temperature-depen
concentrationcu such that, in the solid, the solida (b) phase
is thermodynamically stable only ifc,cu (c.cu). By com-
paring Eq.~16! and Eq.~17!, it is easy to show thatcu is
exactly midway between the two solid-solid coexisten
lines. In order to avoid a phase transformation in the solid
behind the solid-liquid interface, we requirecu to be inde-
pendent of temperature. One way to achieve this is to m
the solid-solid coexistence lines vertical by choosing suita
parameters. This difference from a real peritectic phase
gram is unlikely to change the qualitative behavior of t
system. A phase diagram for the model system used in
simulations is shown in Fig. 2.

The equilibrium interface profiles connecting differe
phases can be obtained by solving the time-independent
dimensional version of the equations of motion with suita
boundary conditions. Since the chemical potential must
constant at equilibrium, the relation

m5
dF

dc
5

] f

]c
~20!

FIG. 2. Phase diagram for our model system. Dashed lines
metastable extensions of the liquidus and solidus lines.
4-4
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PHASE-FIELD MODELING OF MICROSTRUCTURAL . . . PHYSICAL REVIEW E 63 031504
can be used to eliminate the concentration field from Eqs.~7!
and~8!. The appropriate value ofm for a certain temperature
is obtained from the common tangent construction. The
resulting coupled ordinary differential equations were solv
numerically using a Newton-Raphson method on a o
dimensional grid of spacingDx. For simplicity, we assumed
Wf5Wc5W. Unless otherwise stated, all the results bel
are obtained forDx/W50.8, which provides a good compro
mise between computational efficiency and accuracy.
resulting equilibrium profiles, centered at the origin, for t
phase fields and the concentration fora-L equilibrium and
b-L equilibrium atTp are shown in Fig. 3. For solid-solid
equilibrium, the interface profile ofc can be obtained ana
lytically becausef511 is a constant:

c0~x!52tanhS x

A2W
D . ~21!

In all cases, the concentration profiles are given by subst
ing the equilibrium profilesf0(x) and c0(x) obtained pre-
viously into Eq.~20!.

With the equilibrium interface profiles at hand, we c
calculate the surface energiesgaL , gbL , andgab , defined
as the excess Gibbs free energy per unit surface area.
are given by the expressions

gmn5E
2`

`

@Wf
2 ~]xf0!21Wc

2~]xc0!2#dx, ~22!

FIG. 3. Equilibrium profiles for~a! a-L equilibrium and~b! b-L
equilibrium atTp (l52.5). The composition is scaled according
Eq. ~6!.
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wheref0 and c0 are the equilibrium profiles of the phas
fields connecting phasesm andn. The same formula for the
surface energies can also be obtained by a matc
asymptotic expansion@24#. For the solid-liquid interfaces
the surface energies are obtained by numerical integrat
For this purpose, it is more convenient to convert Eq.~22! to
a form without the gradients of the fields. Making use of t
steady-state one-dimensional version of the equations of
tion and the fact thatm is constant in equilibrium, we obtain
after some algebra

d

dx F1

2
@Wf

2 ~]xf0!21Wc
2~]xc0!2#G5

d

dx
~ f 2mc!. ~23!

Now one can integrate Eq.~23! from 2` to an arbitraryx
and make use of the expression for the equilibrium conc
tration profile and the bulk phase values to show that for
solid-liquid interfaces

1

2
@Wf

2 ~]xf0!21Wc
2~]xc0!2#

5g~f0!1
1

2
@11h~f0!#g~c0!1

1

2
@12h~f0!#c0

2

1
l

2 S B̄

Ā
2B2D @11h~f0!#@h~c0!71#. ~24!

Here the upper and lower signs are fora-liquid andb-liquid
equilibrium, respectively, andĀ and B̄ are defined in the
Appendix. For the solid-solid interface, the surface ene
gab can be calculated exactly and is equal to 2A2Wc/3.

Related to the surface energies are the two capill
lengthsd0

a andd0
b defined as

d0
n5

gnL

~Dcn!2~]m/]c!
, ~25!

which can also be expressed in terms of the Gibbs-Thom
constantsGn by

d0
n5

Gn

umnuDCn
. ~26!

These are two of the physical length scales that are rele
in pattern formation in solidification problems. In real sy
tems, the capillary lengths are microscopic and much sma
than all other physical length scales in the problem. Idea
one would like to adjust the capillary lengths in the model
match the physical length scale ratios by choosing suita
model parameters. Since]m/]c5l, it follows that d0

n de-
pends onl as

d0
n}

gnL

l
. ~27!

Hence, to have small capillary lengths, one would like
increasel. However,l cannot be chosen arbitrarily large fo
two reasons. First, the surface tensions themselves de
4-5
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weakly onl for TÞTp . As shown in Fig. 4, these variation
amount to a few percent over the temperature range of in
est whenl is varied by a factor of 5. Secondly, the tempe
ture range in which equilibrium interface solutions exist a
depends onl. More precisely, with a fixed value forl, the
a-liquid equilibrium solution does not exist ifT is below a
certain value, and theb-liquid interface solution ceases t
exist if T is above another value, because ifT is too low or
too high, the free energy density loses a minimum atc equal
to 11 or 21, respectively. We have estimated the range
temperatures in which both solutions exist for differentl by
finding equilibrium solutions at different temperatures. T
results are shown in Fig. 5. We can see that this tempera
range becomes narrower whenl increases. From now on, w

FIG. 4. Dimensionless solid-liquid surface energies versus t
perature for differentl. Circles, gaL /W; squares,gbL /W. Solid
lines, l50.5; dashed lines,l51.5; and dash-dotted lines,l
52.5.

FIG. 5. Temperature range within which botha-liquid and
b-liquid equilibrium solutions exist, versusl. ~Circles: limit of
existence fora-liquid interface solution. Squares: limit of existenc
for b-liquid solution.!
03150
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fix l52.5 unless otherwise stated. This is a comprom
between having a largel and a sufficient working tempera
ture range in which our two-dimensional simulations can
carried out.

To check Young’s condition, we performed two
dimensional simulations atTp on a square grid withDx/W
50.8. The equilibrium angles around a trijunction were me
sured and found to be consistent with Eq.~5! to within a few
degrees. For a moving interface, there are also nonequ
rium kinetic effects related to the attachment of atoms at
interface and solute trapping. Since we are mostly interes
here in qualitative aspects of the growth morphologies,
have not analyzed all these effects in detail. We check
however, by performing dynamical one-dimensional simu
tions that nonequilibrium effects only lead to a deviati
from local equilibrium that does not exceed the Gibb
Thomson effect caused by interface curvature in tw
dimensional simulations.

IV. SIMULATIONS

For our simulations, we cast the equations of motion in
a dimensionless form. For simplicity, we takeWf5Wc
5W and tf5tc5t. By defining the dimensionless var
ables

r̃5
r

W
, t̃ 5

t

t
~28!

and the new variable

m̃5c1A1h~f!1
1

2
A2@11h~f!#h~c!, ~29!

the equations of motion can be written in the form

]f

] t̃
5¹̃2f2

] f

]f
, ~30!

]c

] t̃
5¹̃2c2

] f

]c
, ~31!

]c

] t̃
5a“̃•@D̃~f!“̃m̃#, ~32!

where

a5
tDL

W2
~33!

is the scaled diffusion coefficient of the impurity in the liq
uid, and

D̃~f!5~12f!/2. ~34!

-
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Instead of the concentration far from the interface, we m
also usehb , the volume fraction ofb formed in the solid, to
characterize the overall composition of the sample. The
quantities are related by

C`5~12hb!Cpa1hbCpb . ~35!

In a typical directional solidification experiment, th
sample is pulled under a temperature gradientG with a pull-
ing velocity vp . We define the dimensionless temperatu
gradient and velocity,G̃ and ṽ, by

G̃5
G

umauDCa
W, ~36!

ṽp5vpt/W. ~37!

Usually, thermal diffusion is orders of magnitude faster th
the diffusion of the impurities, and hence we use the ‘‘froz
temperature approximation’’ which assumes that the te
perature of the system adjusts instantaneously to the e
nally imposed temperature gradient. Accordingly, directio
growth along thex axis is implemented by letting

T̃5T̃01G̃~ x̃2 ṽpt̃ !, ~38!

whereT̃0 is some reference temperature.
There are five different physical length scales that con

the microstructural pattern formation: the two capilla
lengths d0

a and d0
b defined by Eq.~25!, the two thermal

lengths

l T
n5

umnuDCn

G
5

umnuDCn

umauDCa

W

G̃
, ~39!

and the diffusion length

l D5
DL

vp
5

a

ṽp

W. ~40!

Equations~30!-~32! are integrated numerically on a two
dimensional grid. We usea51, D x̃50.8, andD t̃ 50.1.
Zero-flux boundary conditions are applied to the two sid
that are parallel to the growth direction. There are seve
features in the model that can be exploited in order to sp
up the computation. First, the phase fieldsf and c differ
significantly from 61 only in the interfacial region, and
hence we can avoid integrating Eqs.~30! and~31! away from
the interface. In addition, Eq.~32! needs to be integrate
only in the liquid. Secondly, the concentration field deca
exponentially in the growth direction and varies only slow
in space in the liquid region far ahead of the interfa
Hence, we can use a coarser and coarser grid as we m
away from the interfacial region. Thirdly, in order to sim
late a semi-infinite system in the growth direction, we ta
advantage of the fact that all the fields remain unchange
the solid in the one-sided model. Whenever the solid-liq
interface has advanced one lattice spacing, we pull the
tem back by one unit and keep the composition at the en
03150
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the liquid side atc` . With all these implementations, we ar
able to carry out simulations with typical lengths in th
growth direction equal to about ten times the diffusi
length. For the results presented in this article, we chos
pulling speed such as to have a diffusion length ofl D
5200W. Other parameters and length scales are listed
Table I.

V. RESULTS

A. Dynamics of spreading

Let us first concentrate on the spreading of theb phase on
the a phase, starting from a single nucleus. Similarly to t
situation considered in Trivedi’s model, the simulation
started with a homogeneous composition in the liquid an
planara-liquid interface. The lateral system sizeL is several
times the diffusion length. Nucleations are assumed to oc
heterogeneously at the solid-liquid interface when the te
perature of the metastable interface reaches a certain un
cooling with respect to the stable solid-liquid equilibrium
The nucleation undercoolingsDTN

a (a on b) andDTN
b (b on

a), shown in Fig. 1, are assumed to be constant. Acco
ingly, in our simulations a circular nucleus ofb phase is put
at the solid-liquid interface on one side of the box when
liquid composition at the interface reaches the threshold
nucleation fixed by the nucleation undercoolingDTN

b . The
radius of the nucleus is taken to be 6W, slightly larger than
the critical radius for nucleation. Since we are interested h
in the deterministic spreading dynamics following a sing
nucleation event, further nucleation is prohibited. Multip
nucleation events will be treated in Sec. V D.

To characterize the dynamics of spreading, we recor
the position and velocity of the trijunction point. The sid
ways velocityvy can be regarded as a measure of the spre
ing speed of theb phase. Figures 6~a! and 6~b! show plots of
vy /vp versus time for different nucleation undercoolings a
different compositionsc` , respectively. Time is measured i
terms of the diffusion time

tD5
l D

vp
5

DL

vp
2

. ~41!

Two very different regimes of spreading can be clearly d
tinguished. Immediately after the nucleation, the spread
velocity is almost independent of the composition, b
strongly depends on the nucleation undercooling. T
growth of the nucleus is influenced only by its immedia
surroundings. On the length scale of the nucleus, which
much smaller than the diffusion length, the impurity conce
tration can be considered constant and is determined onl

TABLE I. List of simulation parameters.

l 2.5 l T
a/ l D 0.895

G̃ 5.583831023 l T
b/ l D 0.0934

ṽp
531023 d0

a/ l D 2.62031023

d0
b/ l D 2.511931022
4-7
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the nucleation undercooling. A higherDT̃N
b is equivalent to a

higher supersaturation, and hence a higher growth spee
At later times, the modifications of the diffusion field in

duced by the growingb phase influence the spreading d

FIG. 6. Plots ofvy /vp ~a! versus time for constant volume frac
tion and varying nucleation undercooling,~b! versus time for con-
stant nucleation undercooling and varying volume fraction, and~c!

versus scaled undercooling2T̃ of thea-L-interface with respect to

Tp . Circles, hb50.375, DT̃N
b50.018 78; squares,hb50.375,

DT̃N
b50.031 29; diamonds,hb50.375, DT̃N

b50.043 81; upward

triangles, hb50.25, DT̃N
b50.031 29; leftward triangles,hb

50.3125, DT̃N
b50.031 29. The dashed line in~b! is for hb

50.1875,DT̃N
b50.031 29, where an island is formed.
03150
namics, and the spreading velocities for equal undercoo
but differentc` start to differ@Fig. 6~b!#. After a complicated
transient, the details of which depend on the choice of
rameters,vy becomes a linear function of time, which mea
a constant lateral acceleration of the trijunction. This acc
eration is independent of the nucleation undercooling or
history of the system, but depends on the composition.
explanation of this finding can be deduced from Fig.
which shows the interface temperatures on the sides of
box and at the trijunction as functions of time. After th
initial transient, the temperature at the trijunction just follow
the temperature on thea side. This implies that thea-liquid
interface is almost planar up to the trijunction. We can a
see that during the whole time of the simulation thea-liquid
interface is still relaxing toward its steady state belowTp .
Hence, the undercooling that drives theb phase to spread is
increasing.

In the late stages of spreading, the lateral diffusion len
D/vy becomes much smaller than the solute boundary la
and is comparable to or even smaller than the tip of
spreading finger. Therefore, the spreading speed should
function of local supersaturation only. To check this assum
tion, we show in Fig. 6~c! the same velocity curves as befor
but now plotted against the undercooling of the plan
a-liquid interface with respect to the peritectic temperatu
2T̃. Since in our phase diagram the liquidus curves
straight lines, this undercooling is simply proportional to t
supersaturation. The curves all collapse onto a single ma
curve after the initial transient, i.e., starting from the tim
when the interface ahead of the trijunction has become
This master curve is not linear, and does not smoothly
trapolate to zero. We did not attempt to calculate it theor
cally. We expect that its detailed form should depend on
characteristics of the trijunction, and in particular on t
angles between the different interfaces. More theoretical
numerical work would be needed to elucidate in detail
role of the various material parameters. Remarkably, sim

FIG. 7. Scaled temperatures at the trijunction and at the so

liquid interface on both sides of the box. (DT̃N
b50.031 29, hb

50.375.!
4-8



en

a
o
at
o

n

f

he

fo
ow

of
d

e
d
r-
ch
on
a

rp
e
d
e
ta

ut
al

e
e
lt
o
r
d
no
e
s
gh
a
o

fo
io

t o
am
lo

ch
els
of

that
s, a

an
e on
the
tra-
a-
or-
e

r-
us

is
ling

t-
,
ed

PHASE-FIELD MODELING OF MICROSTRUCTURAL . . . PHYSICAL REVIEW E 63 031504
observations have been very recently reported in experim
on a transparent organic eutectic alloy@27# during spreading
of the secondary phase on a planar interface of prim
phase. The spreading speed of the secondary phase sh
an approximately linear increase with time, and the d
could also reasonably well be rescaled onto an analog
master curve.

Since thea-liquid interface far ahead of the trijunctio
stays fairly planar before the arrival of theb phase, the time
dependence of the temperature on thea side can be well
described by the Warren-Langer approximation@25#. The
rate of change of the supersaturation is solely determined
the compositionc` , which explains why the final slope o
the curves in Figs. 6~a! and 6~b! depends onc` but not on
the nucleation undercooling.

A completely different behavior is observed when t
composition is sufficiently low. As shown in Fig. 6~b!
~dashed line!, the initial spreading speed is the same as
the other runs. However, at later times, the spreading sl
down and the trijunction point turns around such thatvy
becomes negative. Instead of a band, an isolated islandb
phase is formed. This phenomenon will be addressed in
tail in Sec. V B below.

In the final regime of spreading, when the lateral spe
becomes much larger than the pulling speed, the lateral
fusion lengthDL /vy becomes comparable to the radii of cu
vature close to the trijunction point. In free growth, su
conditions are reached only at very large solidificati
speeds. Under these circumstances, it is clear that the ph
field model no longer reflects quantitatively the sha
interface equations, since it contains corrective terms du
the finite width of the interface. For instance, we observe
violation of Young’s condition at the trijunction point. Mor
precisely, the angles between the interfaces, obtained by
ing the tangent vectors to thef50 andc50 level curves at
the trijunction, are still consistent with local equilibrium, b
the solid-solid interface is highly curved on a length sc
comparable to the widthW of the diffuse interface. This is
due to the fact that the diffusivity varies smoothly within th
diffuse interface, and hence the part of the solid-solid int
face near to the trijunction is still able to move. As a resu
the angles between the interfaces, seen on a macrosc
scale, differ from the local equilibrium angles. For the pu
pose of the present study, where we are mainly intereste
the qualitative features of the microstructures, we did
investigate this effect quantitatively. Let us remark, howev
that such effects may not be simply an artifact of the pha
field model, but may have a physical significance for hi
growth speeds if the relaxation of the trijunction toward loc
equilibrium occurs on a time scale comparable to the time
diffusion through the trijunction region.

B. Morphology transition

The results of the preceding section were obtained
systems with lateral extensions of several times the diffus
length. For some sets of parameters, a surprising even
curs when the system size is reduced while all other par
eters are kept constant. After some time, the spreading s
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down, and the trijunction point may even turn around, su
that vy becomes negative. As a result, the trijunction trav
back to the wall where it originated, and an isolated island
b phase, or partial band, is formed. It hence appears
complete spreading is easier to achieve in larger system
quite counterintuitive result. Figures 8~a! and 8~b! show time
series of typical snapshot pictures for the formation of
island and a band, respectively. The scales are the sam
both axes and in both figures. Isoconcentration lines in
liquid are also shown. It can be seen that a lateral concen
tion gradient builds up in the liquid. This concentration gr
dient plays an important role in the interpretation of the m
phological transition from islands to bands and will b
discussed below.

To study more systematically the conditions for the fo
mation of islands, we performed simulations with vario
lateral system sizesL and compositionsc` , with the follow-
ing results.

~1! At a fixedDTN
b , there exists a critical compositionc*

such that ifc`,c* the b phase always forms islands. Th
critical composition decreases as the nucleation undercoo
increases.

FIG. 8. Spreading of a singleb nucleus over thea phase with

DT̃N
b50.025 04,hb50.3125. ~a! Island formation atL/ l D50.512;

~b! band formation atL/ l D50.64. Time increases from top to bo
tom. ~Dark region,a phase; light region,b phase; unshaded region
liquid. The isoconcentration lines in the liquid are evenly spac
in c.!
4-9
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TAK SHING LO, ALAIN KARMA, AND MATHIS PLAPP PHYSICAL REVIEW E 63 031504
~2! At a fixed DTN
b and if c`.c* , there exists a critica

lateral system sizeLc(c`) such that if the lateral system siz
L.Lc the b phase spreads completely and forms ban
whereas forL,Lc it forms islands.Lc decreases when eithe
c` or DTN

b increases.
~3! When c`,c* , such that theb phase always forms

islands, the final shape~and also the size! of the islands is
independent ofL whenL is larger than a certain size.

Figure 9 shows the final morphology of the system
different c` ~or equivalently differenthb) and for different
nucleation undercoolings. The dashed lines in Figs. 9~a! and
9~b! represent an estimate for the critical system sizeLc(c`)
for the transition from bands to islands. It can be seen
both Lc andc* are smaller for higherDT̃N

b .
The existence of the critical sizeLc can be understood b

noticing that botha andb phases have to reject impurities
order to grow, but the concentration jump at thea-liquid
interface is larger than that at theb-liquid interface. Sinceb
is the stable phase belowTp , there exists a driving force fo
theb phase to spread. On the other hand, asb rejects fewer
impurities thana, the impurity concentration in front of the
b phase rapidly decreases after the nucleation. This crea
lateral concentration gradient and hence an impurity fl
from thea to theb side as can be clearly seen in Fig. 8. Th
lateral impurity backflow will accelerate the growth ofa and
slow down the growth ofb and hence there is a competitio
between the two phases.

To be more precise, we can consider the following scal
argument. Let us assume for simplicity a constant spread
speedvs for the b phase. Then the time required by theb
phase to spread across the system isL/vs . On the other

FIG. 9. Morphology map at~a! DT̃N
b50.025 04 and~b! DT̃N

b

50.031 29.
03150
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hand, impurities diffuse laterally through the system on
time scale ofL2/DL . If L/vs,L2/DL , theb phase is able to
spread over thea phase before a significant impurity bac
flow can occur. If the opposite is true, the impurities ha
enough time to diffuse and the growth of theb phase is
slowed down. Hence, the critical system size is given by

Lc;
DL

vs
. ~42!

Another way to interpret the above criterion is to note th
the ‘‘diffusion speed,’’ which is roughly the speed of th
impurities diffusing laterally through the system, is given
DL /L. If the diffusion speed is smaller thanvs , spreading
occurs, and Eq.~42! follows immediately.

Clearly, the above argument is only qualitative. We ha
assumed a constant lateral spreading speed in Eq.~42!, al-
though Fig. 6 shows that the spreading speed varies w
time, and hence we can give no explicit expression forvs as
a function of composition and nucleation undercoolin
However, we can see from Fig. 6 that, for any given tim
the instantaneous spreading speed increases with incre
nucleation undercooling and increasing volume fraction ob
phase. This observation, together with Eq.~42!, allows us to
understand qualitatively the shape of the curvesLc(c`) in
Fig. 9. In addition, this criterion allows understanding of t
striking finding than spreading is easier in large systems
in small ones.

C. Banding and island formation

So far, we have concentrated on how a singleb nucleus
spreads on thea phase. It is natural to ask what happens
renucleation is allowed. This is a complicated problem sin
nucleation is an inherently stochastic phenomenon, wh
cannot be consistently treated within our determinis
model. However, we can try to gain some insight by inc
porating nucleation phenomenologically. We will proceed
two steps. First, we treat repeated nucleation in sm
samples by deterministic rules to make contact with the
cent experiments in the Sn-Cd alloy system@13#. Then, in
the next section, we investigate the influence of multiple s
chastic nucleations on the pattern formation dynamics
large systems.

For solidification in small systems, it can be assumed t
nucleation occurs predominantly at the container walls cl
to the solid-liquid interface. The density of nuclei and t
nucleation rate are very rapidly varying functions of t
composition. Therefore, it seems reasonable to assume t
nucleus will form as soon as the concentration in the liq
exceeds the threshold corresponding to the nucleation un
cooling. Accordingly, we incorporate repeated nucleation
the following rules~the nucleation ofa is handled like the
nucleation ofb before, by placing a small circular nucleus
the solid-liquid interface!.

~1! A nucleus of the new phase is placed at one side of
container as soon as the undercooling of the interface
ceeds the nucleation undercooling. If both sides of the b
4-10
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reach the threshold at the same time, one side is chose
random.

~2! Once a germ has nucleated, further nucleation of
same phase is prohibited until the germ has either comple
spread across the system or completed the formation o
island.

We consider now the two nucleation undercoolings
free parameters, and study different cases. When bothDTN

a

and DTN
b are large enough such that the newly nuclea

phase spreads completely before the original phase is ab
renucleate again, banded structures are obtained. F
smallerDTN

b , the b phase does not spread completely, b
forms an island. Thea phase overtakes theb phase and
continues to grow until the nucleation threshold forb is
reached again. The islands ofb phase form alternately on
each side. This is a result of the history of the system: a
result of the formation of the previous island, the concen
tion of impurities is lower on the side where the last isla
occurred, and hence nucleation ofb is favored at the othe
side. Examples of these banded and island structures
shown in Fig. 10~a! to Fig. 10~d!. The scales on both axes i
these figures are the same, but Fig. 10~e! has a different scale
from Figs. 10~a!–~d!. This last picture was obtained by
simulation at much smallerDTN

a , and the lateral size of the
system is smaller. In this case, an oscillatory structure
obtained which tends to approach a coupled growth ste
state after a complicated transient.

These results are in good qualitative agreement with
crostructures obtained in small samples of Sn-Cd alloy@13#.
In the experiments, islands tend to form always on the sa
side of the sample. We believe that this is due to a sli
lateral temperature gradient across the sample, which is
ways present in experiments.

FIG. 10. Microstructures obtained from simulation for~a! DT̃N
a

50.135 65, DT̃N
b50.043 81, L/ l D50.512, hb50.125, ~b! DT̃N

a

50.174 40, DT̃N
b50.056 33, L/ l D50.512, hb50.125, ~c! DT̃N

b

50.025 04, L/ l D50.512, hb50.05, ~d! DT̃N
b50.031 29, L/ l D

50.512, hb50.075 and ~e! DT̃N
a50.019 38, DT̃N

b50.031 29,
L/ l D50.128, hb50.4375. ~Dark region,a phase; light region,b
phase.!
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D. Nucleation controlled microstructures in spatially extended
systems

Until now, we have mainly focused on the microstru
tures formed in small samples. It is interesting to ask w
kinds of structure are to be expected in large samples in
absence of convection. This situation could be achieved
ther in quasi-two-dimensional thin samples, or in a mic
gravity environment. To model the microstructure formatio
larger scale computations were carried out. However, i
spatially extended system, multiple nucleations are unav
able and must be incorporated in a way that is consis
with the predictions of classical nucleation theory. We cho
to extend our model by incorporating the effects of multip
nucleation in a phenomenological manner.

For the nucleation of theb phase on a planara front ~the
same arguments also apply to the nucleation ofa on b),
classical nucleation theory predicts the nucleation rate

I 5I 0 e2DF* /kBT, ~43!

whereI 0 is a constant prefactor~with dimension equal to the
number of nucleations per unit volume per unit time! and
DF* is the activation energy for heterogeneous nucleati
Assuming that the critical nucleus is a spherical cap o
planar substrate~the spherical cap model!, DF* is given,
respectively, in two and three dimensions by

DF* 55
gbL

2

DFB
3

u2

u2~1/2!sin 2u
, 2D

gbL
3

DFB
2

3
16p~21 cosu!~12cosu!2

12
, 3D,

~44!

whereDFB is the difference between the bulk free energy
the b phase and of the liquid phase. The contact angleu, as
shown schematically in Fig. 11, is determined by the bala
of surface tensions parallel to the substrate,

gaL5gab1gbL cosu. ~45!

Assuming that the system is locally in thermodynamic eq
librium, it can be shown thatDFB is proportional to (T
2Tp) @26#, such that for a quasi-two-dimensional system t
nucleation rate forb on a can be written as

I 5H I 2D exp@2A/~T2Tp!2# if T,Tp

0 if T>Tp ,
~46!

FIG. 11. Sketch of a critical nucleus in the spherical cap mo
for heterogeneous nucleation.
4-11
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where A is a constant, andI 2D has now the dimension o
number of nucleations per unit time and per unit length
the interface. A similar expression withw50 whenT<Tp
holds fora nucleating onb. The 3D form ofDF* is used in
deriving Eq.~46! since, in practice, the size of a nucleus
still much smaller than the thickness of a thin sample. Eq
tion ~46! determines the local nucleation rate and hence
probability per unit time of a nucleus forming as a functi
of the local temperature at the solid-liquid interface.

Unfortunately, both experimental and theoretical es
mates of the free energy barrier and the kinetic prefactor
scarce in the context of heterogeneous nucleation, since
actual values may depend on complicated details of the
terfacial structure. Since, in the present study, we focus
morphological aspects of the large scale structure, we
cided to treat the two quantities as free parameters. M
over, we want to compare the stochastic simulations to
deterministic runs of the preceding sections. Conseque
we may eliminate one of those two parameters by the
quirement of recovering the rules used previously. That is
the deterministic simulations a nucleus was put at the so
liquid interface when it reached the predetermined nuclea
undercooling. In the stochastic runs, nucleation should th
fore occur with probability 1 for the same interface tempe
ture. This condition will lead to a relation between the pr
actor and the energy barrier in the nucleation rate.

To proceed, let us first specify how we treat nucleation
the simulation algorithm. The interface is scanned at a re
lar time intervalDtN , and nucleation is attempted at poin
regularly spaced by a distanceDsN along the interface. The
nucleation rate may be rewritten as

I 5
w~T!

DtNDsN
, ~47!

where

w5H w0 exp@2A/~T2Tp!2# if T,Tp

0 if T>Tp
~48!

is a dimensionless function of the interface temperature
each test point, a nucleus is generated with probability 1
w.1, and with probabilityw otherwise. That is, ifw,1, a
random numberj uniformly distributed between 0 and 1
drawn, and a nucleus is generated ifj,w. As before, the
nucleus is spherical and has a size of 6W. A possible draw-
back of the procedure outlined above is that the actual nu
ation rate depends on the values chosen forDtN and DsN .
However, it is reasonable to assume that the microstruct
should not depend too sensitively on the choice of th
parameters as long as their values are much smaller tha
time and length scales of the pattern formation process.

Now we can relate the prefactor and the barrier in
nucleation rate. In the preceding sections, nuclei were in
duced deterministically when the nucleation undercool
was reached, that is, at a nucleation temperature

TN
b5Tp2

DTN
b

12mb /ma
. ~49!
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This implies that in the stochastic algorithm we must choo

w~TN
b !5w0 exp@2A/~TN

b2Tp!2#51. ~50!

Given this condition, there is only one remaining free para
eter; we choose the dimensionless kinetic prefactorw0. This
parameter controls the temperature range over which nu
ations occur. Indeed,w(T) is a function that rapidly in-
creases in a narrow temperature range aroundTN

b . Increasing
w0 andA simultaneously while respecting the constraint E
~50!, the rise of the nucleation rates becomes sharper
shown schematically in Fig. 12.

Now consider ana-liquid interface during its transient
when the temperature at the interface is decreasing f
aboveTp to its steady-state temperature. If the temperat
range over which the nucleation rate increases significa
is narrow, all nucleation events will occur almost at the sa
time when the interfacial temperature coincides withTN

b . As
a result, the mean separation between the nuclei will
small. On the other hand, ifw0 is small, nuclei appear with a
broader spread in interfacial temperature, and the mean s
ration between the nuclei will be larger. Since the me
separation between the nuclei plays a similar role as the
tem size in a small sample experiment, we might expec
morphology transition from bands to islands asw0 is in-
creased.

Figure 13 shows the microstructures obtained in simu
tions for small w0, ranging from 53103 to 53105. The
lateral system size is about twice the diffusion length, and
use periodic boundary conditions in the direction perp
dicular to the temperature gradient. The lateral spreading
multiple nuclei leads to a jagged morphology. Ea
V-shaped site in the figures indicates a nucleation event~ei-
ther b on a or a on b). A transition from irregular banded
structures to islands can be observed asw0 increases. Note
however, that nucleation events occur in bursts, leading
spatial periodicity along the growth direction that can
clearly distinguished in Fig. 13~c!. This means that there i
still a ‘‘banding cycle,’’ now consisting of layers of a two
phase composite structure~particulate structure! and layers
of purea matrix.

FIG. 12. Schematic plot of the dimensionless nucleation r
w(T) versus temperature for two different choices ofw0 andA.
4-12
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The values forw0 in Fig. 13 are somewhat small. Th
attempt ratew0 should be related to the rateI 0 in Eq. ~43!,
which is typically about 1030 nuclei/cm3 s for heterogeneou
nucleation in metallic systems@11#. Hence we investigated
the microstructures formed with larger values ofw0, ranging
from 531011 to 531043. In this range, we always obtai
island structures that look qualitatively similar~Fig. 14!, and
not too different from Fig. 13~c!. This implies that the mi-
crostructures obtained with multiple nucleation events
not very sensitive tow0 whenw0 is larger than some critica
value. Hence we would expect predominantly island str
tures in spatially extended systems.

The last statement, however, is valid only for the qu
restrictive assumptions made in our model. Most imp
tantly, we have assumed that the probability of nucleat
depends only on the composition in the liquid, and not on
local geometry of the interface. This neglects the presenc
grain boundaries and impurities~bubbles, inclusions! which
can considerably enhance nucleation. Such heterogene
broaden the distribution of the nucleation rate as a func
of temperature, and would hence favor bands. The evolu
of the grain structure could in principle be modeled by
cluding the local crystalline orientation as an additional or
parameter. An interesting perspective is that the interp
between nucleation at grain boundaries and spreading m
select a certain grain size, since for small grains a sprea
phase can engulf and hence ‘‘heal’’ grain boundari
whereas for large grains nucleation at the solid-liquid int
face ~as modeled in our simulations! may occur and lead to
the formation of new grains. Such a study, however,
largely beyond the scope of this article.

FIG. 13. Microstructures obtained from simulations with s

chastic nucleation events forL/ l D52.048, hb50.25, DT̃N
a5DT̃N

b

50.031 29, and~a! w0553103, ~b! w0553104, ~c! w055
3105. Growth is from bottom to top; dark regions,a phase; light
regions,b phase.
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VI. SUMMARY AND CONCLUSIONS

We have developed a phase-field model to investiga
class of banded microstructures that form during the dir
tional solidification of peritectic alloys under purely diffusiv
growth conditions. We focused on a regime of large therm
gradients and low pulling speeds where both phases are
phologically stable and the interface dynamics is control
by a subtle interplay between the growth and nucleation
two competing solid phases, rather than by the morpholo
cal instability of one phase. We restricted our attention t
generic peritectic phase diagram that simplified both
models and the computations, but our approach is in p
ciple flexible enough to be extended to phase diagrams
specific materials.

The two-dimensional simulations of this model have sh
light on three main aspects of banding: the transition fr
islands to bands that has been observed in narrow sam
where convection is suppressed@13#, the associated dynami
cal spreading of one phase onto the other, and the typ
structures that one would expect to form in wide samp
under purely diffusive growth conditions that are not pre
ently accessible in an earth-based laboratory, at least for
alloys investigated to date.

We have shown that the transition from islands to ban
can be understood in terms of a competition between
lateral spreading ofb on a and the diffusive backflow of
rejected impurities froma to b. This competition leads to
the surprising result that bands tend to form more easily
wider samples, in qualitative agreement with recent exp
ments in the Sn-Cd alloy carried out in small samples
order to suppress convection@13#. The critical system sizeLc
at which this transition occurs depends on the nuclea

FIG. 14. Microstructures obtained from simulations with st
chastic nucleation events:~a! w05531011, ~b! w05531026, ~c!
w05531043; other parameters as in Fig. 13. The unshaded reg
is the liquid.
4-13
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undercooling for theb phase that influences the spreadi
rate, and on the alloy composition, withLc becoming infinite
when the volume fraction of theb phase falls below a mini-
mum value necessary for band formation. The influence
other parameters, in particular the form of the phase diag
and the equilibrium angles at the trijunction, has not be
investigated in detail here.

When the peritectic phase fully covers the parent pha
its spreading dynamics is characterized by a remarkably
form acceleration of the moving trijunction that depends
the composition, but not on the nucleation undercooli
This acceleration originates from an increase with time of
local supersaturation~driving force for spreading! associated
with the relaxation of the planar parent phase ahead of
trijunction to its steady state belowTp , together with a direct
relationship between the instantaneous speed of the trij
tion and this driving force that depends on the material pr
erties, but not on the history or the overall composition of
sample. Moreover, the relative angles between phase bo
aries at the trijunction during rapid spreading depart sign
cantly from those prescribed by Young’s condition, indic
ing a strong departure from local equilibrium. Bo
predictions might be experimentally testable in transpar
organic eutectic systems that exhibit similar spreading tr
sients before coupled growth is established@27#.

The formation of multiple nuclei in wide samples (L
@Lc) adds a stochastic element to the interface dynam
that renders the range of possible patterns even richer.
can nonetheless distinguish two basic types of structure
can be understood within the framework of the single isla
to band transition in narrow samples (L;Lc). The first is a
discrete banded structure made up of separate jagged b
that span the whole width of the sample. The second
particulatebanded structure made up of approximate rows
particles ~islands! of the peritectic phase embedded in t
matrix of the parent phase. The banded~particulate! structure
is naturally selected if the mean distance between nucle
larger ~smaller! than the critical sample widthLc for the
island-band transition, and, moreover, simulations reveal
the particulate structure is preferred if nucleation is assum
to follow a classical nucleation law. Even though we mo
eled patterns in wide samples with such a law, we expect
transition from a discrete to a particulate banded structur
be generally governed by the mean distance between n
even if other nucleation mechanisms~such as wall-induced
nucleation and nucleations at grain boundaries! play a domi-
nant role. Both types of structure could conceivably coex
in the same sample if nucleation conditions change du
growth.

There are a number of possible extensions of the pre
study. One is to investigate the patterns that form for a so
what larger range of pulling speeds where the parent pha
morphologically unstable, but the peritectic phase is still l
early stable. Another is to incorporate the influence of c
vection in a fully consistent way to make contact with e
periments over a wider range of sample sizes, which is n
possible within a phase-field context@28,29#.
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APPENDIX: RESULTS OF THE COMMON TANGENT
CONSTRUCTION

The common tangent construction allows one to de
mine the equilibrium composition for two-phase equilibriu
for given bulk free energiesf n of the two phases. For two
phase equilibrium, the bulk phases must have equal chem
potentials m5d fn /dc and grand potentialsV5 f n2mc.
Solving the resulting equations for our model bulk free e
ergies, we find for solid-liquid equilibrium

cL
a,b5

S B16
1

2
B2D

S A16
1

2
A2D 1A1 , ~A1!

cS
a,b5

S B16
1

2
B2D

S A16
1

2
A2D 2A17A2 . ~A2!

The upper~lower! sign is for thea (b) phase.
For solid-solid equilibrium, we get

cSS
a 5

B2

A2
2A12A2 , ~A3!

cSS
b 5

B2

A2
2A11A2 . ~A4!

For convenience, we define

Ā5~A16 1
2 A2! ~A5!

and

B̄5~B16 1
2 B2! ~A6!

where the upper~lower! sign is for thea (b) phase.
In order to relate the parameters in our model to a phy

cal system, let us write

B15B111B12T̃, ~A7!

B25B211B22T̃. ~A8!
4-14



re

ui

ra

we

d in

PHASE-FIELD MODELING OF MICROSTRUCTURAL . . . PHYSICAL REVIEW E 63 031504
Here, c and T̃ are the scaled composition and temperatu
respectively, defined in the text. LetDCn and mn be the
concentration jump at the solid-liquid interface and the liq
dus slope of phasen, respectively, atTp . Let r be the ratio
DCb /DCa ; then the parametersA1 , A2 , B11, B12, B21,
andB22 are related to these quantities in the phase diag
by

A15
1

4
~11r !, ~A9!

A25
1

2
~12r !, ~A10!

B115
1

4
~11r !F r 2

1

4
~11r !G , ~A11!

B215
1

2
~12r !F r 2

1

4
~11r !G , ~A12!
.

-

-

4

ll.

on
.
of

03150
,

-

m

B1252
1

4 S 11r
ma

mb
D , ~A13!

B2252
1

2 S 12r
ma

mb
D . ~A14!

In order to have vertical solid-solid coexistence lines,
have to choose the parameters such as to makeB22 vanish.
The parameters for our model peritectic system are liste
Table II.

TABLE II. Parameters for our model peritectic system.

Cp 38.2 wt % A1 3.3074531021

Cpa 22.1 wt % A2 3.3850931021

Cpb 33.0 wt % B11 22.5679031023

ma 26.71865 K/wt % B21 22.6281831023

mb 22.17 K/wt % B12 20.5
B22 0.0
ys.

s.

c.

sica

99.

d
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