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During the directional solidification of peritectic alloys, two stable solid ph§sasent and peritectigrow
competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent
or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio
(Glvp), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array
structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In
contrast, whenG/v, is large enough for both phases to be morphologically stable, the formation of the
microstructure becomes controlled by a subtle interplay between the nucleation and growth of the two solid
phases. The structures that have been observed in this réigirmmall samples where convection effects are
suppressedinclude alternate layerébands of the parent and peritectic phases perpendicular to the growth
direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as
proposed in a recent moddR. Trivedi, Metall. Mater. Trans. 26, 1 (1995], as well as partially filled bands
(islandg, where the peritectic phase does not fully cover the parent phase which grows continuously. We
develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to
explore the formation of these structures. Simulations of this model shed light on the morphology transition
from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following
nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth
morphology that one might expect to observe in large samples under purely diffusive growth conditions.

DOI: 10.1103/PhysReVE.63.031504 PACS nunier64.70.Dv, 81.30.Fb, 05.70.Ln

[. INTRODUCTION is shown in Fig. 1. It contains a peritectic point, analogous to
the eutectic point, at which two different solid phases, the
The spontaneous emergence of complex microstructurglarent(primary or«) and peritectiqsecondary op) phases,
patterns during the solidification of alloys is a subject of bothcoexist with a liquid of higher composition than either solid
fundamental and applied interddf]. During directional so-
lidification, a sample is pulled in an externally imposed tem- T
perature gradiers with a fixed pulling speed,. This setup
has been used extensively in fundamental studies of solidifi-
cation patterns because it allows one to study their formation
under well-controlled growth conditions. Depending on the

m

type of alloy and the rati&/v,, various patterns are pos- g
sible. During monophase solidification of a dilute binary al- ®

. . . . I
loy, solute redistribution leads to a well-known morphologi- g
cal instability (Mullins-Sekerka instability[2]) below a CT

critical ratio G/v,, and cellular or dendritic patterns are
typically formed. For nondilute alloy concentrations close to
a eutectic point, two stable solid phases of different compo-
sitions can grow from a metastable liquid. In this case, the
two phases cooperate and form lamellae or rods parallel to
the growth directior{coupled growth For off-eutectic com-
positions, coexistence between dendrites and coupled growth
structures is also observed. FIG. 1. Schematic phase diagram of a peritectic al®ycon-
Much less is known about microstructural pattern forma-centration of impuritys; T,,, melting point of pureA; T, peritec-
tion in peritectic growth(1], despite the fact that many in- tic temperatureC,, C,, andC,, are the compositions of the
dustrially important metallic alloy systems as well as ceramiiquid, g solid, anda solid that are in equilibrium &f,. ATg and
ics such as the highi; superconductor YBCO are ATE are the nucleation undercoolings farand 8 phases, respec-
peritectics. A schematic phase diagram of a perite8ti® tively. Dashed lines are metastable extensions of the liquidus and
alloy (whereB will be called the impurity for conveniente solidus lines.

[
Composition
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phase. Above the peritectic temperatligg the parent phase ness. This model, however, yielded a banding cycle and band
is stable and the peritectic phase is metastable, whereas kspacings that are inconsistent with experimental results, hint-
low T,, the opposite is true. For comparison, in a eutecticjng that this boundary-layer approximatidtypically valid
both solid phases are stable below the eutectic temperaturr strong convectionis inadequate to describe these experi-
and metastable above, and the impurity concentration in thgents. Around the same time, careful serial sectioning of
liquid falls in between the concentrations of the two solidsplidified Pb-Bi and Sn-Cd alloys revealed that the seem-
phases. For a sufficiently lo®/v,, ratio, a dendritic array jngly banded structures are actually oscillatory treelike struc-
structure of the parenor the peritectic phase is typically tyres connected in three dimensidis], and not discrete
observed, and which of these two phases is selected depengignds, thereby resolving experimentally this composition
on the alloy composition an@/v, [3]. In contrast, for a high  range paradox. Following this finding, a more accurate
Glv, ratio morphological instability is suppressed. In this model was developed that assumes a planar solidification
case, banded structures made up of alternating layers of phiront, but incorporates a fully two-dimensional convection
mary and peritectic phases perpendicular to the growth difiow field [14]. This model successfully reproduced the ob-
rection are formed. These structures have by now been olyerved oscillatory structures.
served in various peritectic systems, including Sn{@d], Following these studies, experiments were conducted in
Sn-Sh[6], Zn-Cu[6], Ag-Zn[7], and Pb-Bi[8,9]. Itis worth  thin tubes to reduce convectidi3]. For tube diameters
noting that eutecticlike coupled growth structures, which ar&smaller than 1 mm, truly discrete bands indeed became ob-
quite distinct from banded structures, have recently been Otgervame inside a narrow Composition range predicted by the
served in the Fe-Ni systerfl0]. Whether stable coupled 1p diffusive growth model. Surprisingly, however, it was
growth is theoretically possible during peritectic growth hasa|so observed that when the tube diameter was further re-
remained an open question for quite some i@k and we  duced, “islands” of theg phase formed inside the matrix of
will address this issue elsewhere. Here, we focus primarilfhe o phase, instead of discrete bands. This observation sug-
on banded structure formation and phenomena associatgfésts that there is a microstructural transition from bands to
with the dynamical spreading of one solid phase onto thgsjands if the system size is reduced. It was also observed
other. o _ _ _ that islands tend to form more easily for initial compositions
Recently, Trivedi has introduced a one-dimensiod&)  closer toCp, . In addition, some spatially chaotic patterns
model [11] to explain the formation of peritectic banded were observed in some experiments. The formation of these
structures for purely diffusion-controlled growth. The con-stryctures is controlled by a subtle interplay between the
ceptual banding cycle assumed in this model is as followspycleation process and the competition between the growth
Consider a melt with homogeneous compositibn<C, be-  of the nuclei and the preexisting phase. In this respect, the
ing solidified Starting from a flaty-IIqUId interface in equi- one-dimensional model may not a|WayS be adequate to de-
librium. The rejection of impuritie® into the liquid during  scribe this competition because it assumes an infinite spread-
solidification leads to the bUlIdUp of a solutal bOUndary Iayer.ing Speed for the new|y nucleated phase_ Moreover, the 2D
As a result, the interface temperature decreases, followingonvection model assumes a flat interface and is hence not
the liquidus curve in the phase diagram. @t is large el suited to simulate heterogeneous nucleation and spread-
enough, the interface temperature eventually falls sufficientlyng. In order to model accurately the formation of these dif-
belowT, for the peritectic phase to nucleate heterogeneouslYerent structures, a truly 2D model of interface evolution is
at the solid-liquid interface before the growth of thephase  necessary. The particular difficulty of this problem is that the
has reached its steady state. The newly nuclegtgthase  microstructure formation is controlled by an interplay be-
rejects fewer impurities than the phase. Consequently, the tween nucleation and growth of the different phases. No
magnitude of the solutal boundary layer decreases and thgeady-state growth mode exists, which makes the whole
interface temperature increases, following now géquid problem explicitly time dependent.
coexistence line in the phase diagramCIf is low enough, In this paper, we use a phase-field appropth-27 to
such that the corresponding interfacial temperature is suffinvestigate the formation of this class of banded microstruc-
ciently higher thanT,, the « solid may renucleate again tures in a purely diffusive regime and a 2D geometry. The
before the steady state is reached, and the cycle repeafshase-field method eliminates the need of explicit front
Therefore, this model predicts that bands can form onlytracking and thus greatly simplifies the task of numerically
when the composition falls inside a narrow window in thesolving the equations of peritectic solidification that involve
hypoperitectic region ¢,,<C..<C,z) whose width de- three-phase junctions. A phase-field model for peritectic
pends on the nucleation undercooliny$y andATﬁ. growth has recently been proposgzB]. Here, we use an
The first attempts to validate this prediction experimen-alternative model that is closer to the eutectic model of
tally yielded contradictory results. Directional solidification Wheeleret al. [22)].
experiments with Pb-Bi and Sn-Cd alloys seemed to show We first investigate the spreading of the peritectic phase
that bands also form in the hyperperitectic regioD,4 on the primary phase after a single nucleation event. We
<C.<Cy), in apparent contradiction with this prediction. characterize in detail the dynamics of the three-phase junc-
An attempt was made to resolve this “composition rangetion during spreading and find a morphological transition
paradox” by incorporating convection effedtk?], assuming from discrete bands of and 3 phases to isolated islands of
the existence of a fully mixed liquid of uniform composition 8 phase when the system size is decreased, in qualitative
outside a purely diffusive 1D boundary layer of finite thick- agreement with experiments. Moreover, our simulations en-
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able us to understand physically the basic mechanism tha¢vel curve¢=0, and the interface between the salicand
underlies this transition. We then investigate the effect of3 phases is defined by the level curye=0 when ¢ is
multiple nucleations on microstructure formation in large positive. One important difference from R¢R2] is that in
systems by supplementing the phase-field equations with eur modely takes the well-defined valug=0 in the liquid.
phenomenological stochastic nucleation law. This modification is necessary because, in the model of
The remainder of this article is organized as follows. InWheeler et al, the equation of motion fory becomes a
Sec. I, we write down the sharp-interface and phase-fieldimple diffusion equation in the liquid. This introduces an
models. Section Il is devoted to the study of the equilibriumundesirable new time scale in dynamical simulations that is
properties of the phase-field model and Sec. IV describes themoved in the present approach.
simulation method. Results are presented in Sec. V, followed As a third dynamical variable we need the compositin

by a summary and conclusions in Sec. VI. which is a conserved field. We define the scaled composition
Il. MODEL c(r,t)=[C(r,t)=Cpgl/AC,, (6)
A. Sharp-interface model whereAC,=(C,—C,,), v=a,p, is the concentration jump

at thev-liquid interface afT, .

The sharp-interface equations are given b p . .
P g g y In terms of these quantities, the equations of motion that

4,C=D_V?C, ) govern the dynamics of the system are given by
vp(CL—C,)=—-Dd,C,, 2 T(ﬁ@:_f, @)
at 5¢
1
T:Tp+mV(CL—Cp)—FVK—Evn, (3) o SE
o T Sy (€)
where C denotes the concentration of impuriB; and the
subscriptr labels the solide and 8 phases. Equatiofl) is 9 SF
the diffusion equation for the solute in the liquid with the Ezv. M(¢)V5—C , 9)

solute diffusivityD, . We have assumed that diffusion in the
solid is negligible(one-sided model Equation(2) expresses whereF is the dimensionless free energy of the system,

the mass conservation at the moving interface, withand L
d,, denoting the normal velocity of the interface and the de—the Helmholtz free energy, divided by the product of the

rivative normal to the interface, respectively. Finally, E8) system size and a typical value of the free energy density that
is the Gibbs-Thomson condition at the solid-liquid interface,.Sets the physical energy scaldi(¢) is the mobility of the

with K, m,, u, andT, being the interface curvature, liqui- |mpuriti<_as, andr, and 7, are (fash relaxation times for t.he.
dus sIopeV kinetic coefficient, and Gibbs-Thomson consta hase fields. These equations are of the standard variational
of phaseyy respectively The’Gibbs-Thomson constakits orm k_nown from_ out-of-eqwhbnu_m thermodynamlcs. Note
are definea by ' that, sincedF/ éc is the local chemical potentiad, Eq.(9) is
simply the continuity equation for the impurity concentration

YTy with the mass current given by
FV=—7 (4)

L, J=—M($)Vp. (10)

wherey,, is the surface energy of theliquid interface and
L, is the latent heat of fusion for phase both taken at the
peritectic temperature. Young's condition

If there are no fluxes across the boundary of the volume
whereF is defined,dF/dt<0 and Eqgs.(7)—(9) imply that
the dynamics drives the system toward a minimum of free
5) energy. _ .

The free energy functional of the system is assumed to be
must be satisfied at the trijunction points where three phase¥ the form
meet, wherd ,, is the unit vector parallel to tha-v inter-

face and pointing away from the trijunction. F:f {%W§SIV¢|2+%W2¢|V¢//|2+f(¢,¢//,c)}dr. (11)

Yartat T ¥pitpL T Yaptap=0

B. Phase-field model SinceF, ¢, and ¢ are dimensionless, the coefficienté,

To distinguish between the three possible phdkgsid, and W,, have the dimension of length: they determine the
« solid, andg solid), we follow a similar approach to that of width of the diffuse interfaces. The form of the free energy
Wheeleret al.[22] for eutectic solidification by introducing density is chosen such that there are two minimgat+ 1
two nonconserved order paramet@obase fields ¢ and . corresponding to thex (+) and B8 (—) phases forg¢
The first distinguishes between solidg€ 1) and liquid (@ =+1. There is a single minimum in the liquid correspond-
=—1), the second between the solid (¢=1) and theg ing to ¢=—1 and¢=0, andf(¢,¥,c) has a single mini-
solid (¢y=—1). The solid-liquid interface is defined by the mum as a function ot for fixed values of¢ and ¢ corre-

031504-3



TAK SHING LO, ALAIN KARMA, AND MATHIS PLAPP PHYSICAL REVIEW E 63 031504

sponding to the three equilibrium phases. A convenient way
to match these requirements is to construct a free energ 0.2
density of the form
I
N . ) ot} l
f(¢.,0) = 5{c+Aih(¢) + FA[ 1+h(¢)Th(¥)} 3 |
< I
3 |
“MBih(4)+3BALN(H) I} +a(@)  E oof %
t3LTh(H)IgW) +3-h@)ly? (12
L \
Here,\ is a positive constant, andl;, A,, B4, andB, are e -0l Y
functions of temperature. The functianis a double-well '
potential with minima at- 1, and the functioth must satisfy 02 |
h(x=1)==1 andh’(=1)=0 in order to keep the minima of
f at constant values ap and ¢, independent of the value of 10 _0'_5 0.0 0:5 1.0
c. We take (C-C_,)/AC
pp/ Ve
— 42 4
9($)=1/4— ¢°I2+ ¢%/4, (13 FIG. 2. Phase diagram for our model system. Dashed lines are
3 metastable extensions of the liquidus and solidus lines.
h(¢)=3(d— ¢°13)/2. (14

construct, say, the two liquidus lines and the two solidus
lines and leave the two solid-solid coexistence curves deter-
mined by Eqg.(A3) and Eq.(A4). Since we are interested
only in the behavior of the system at temperatures close to
A T,, we assume for simplicity that the liquidus and solidus
fi=f(—1,0c)==(c—A;)>+\By, (15 lines are straight, and that the concentration jumps at the
2 solid-liquid interface are constariquidus and solidus are
\ paralle). We can then choos&; andA, as constants ang;
— - 2_ and B, as linear functions of the temperature. The corre-
f.=f(L1e) 2(C+A1+A2) MB1+B,), (16 sponding expressions for the functioAs, A,, B;, andB,
are given in the Appendix expressed in terms of the dimen-
sionless temperature field

The functionsg(y) and h(y) are similarly defined. It fol-
lows trivially from Eq. (12) that the bulk phase free energy
densities are given by

fBEf(l,_l,C):%(C+A1_A2)2_)\(Bl_82). (17)
- (T-Ty

- . — 1
For the mobility functionM (¢), we take |m,|AC,’ (19

D, which is a measure of the temperature relativé fsmormal-
M(¢)=751(1=¢). (18)  ized by the freezing range of the phase.
In the present model, there exists a temperature-dependent
With this choice, the diffusion coefficient of the impurity is a concentratiort, such that, in the solid, the solte (5) phase
constant equal t®, in the liquid and zero in both solids, is thermodynamically stable only #<c, (c>c,). By com-
which corresponds to the so-called one-sided model. A starParing Eq.(16) and Eq.(17), it is easy to show that, is
dard asymptotic analysis of the sharp-interface limit of theexactly midway between the two solid-solid coexistence
present phase-field modg24] shows that Eqs(7)—(9) re-  lines. In order to avoid a phase transformation in the solid far
duce as expected to Eqd)—(3). The relation between the behind the solid-liquid interface, we requicg to be inde-
parameters in the two sets of equations is given in the nexgendent of temperature. One way to achieve this is to make

section. the solid-solid coexistence lines vertical by choosing suitable
parameters. This difference from a real peritectic phase dia-
Ill. PHASE DIAGRAM AND EQUILIBRIUM PROPERTIES gram is unlikely to change the qualitative behavior of the

system. A phase diagram for the model system used in our
By applying the well-known common tangent construc-simulations is shown in Fig. 2.

tion to the bulk free energy densities given by E{E5)— The equilibrium interface profiles connecting different
(17), we can construct the equilibrium phase diagram of thephases can be obtained by solving the time-independent one-
phase-field model. The equilibrium compositions can be exdimensional version of the equations of motion with suitable
pressed in terms of the temperature-dependent funcigns boundary conditions. Since the chemical potential must be
A,, B4, andB, (see the Appendjx However, since there are constant at equilibrium, the relation
only four functions, we can at most fit four lines out of six in
the phase diagram(i.e., three pairs corresponding to _ f: ﬁ (20
a-liquid, B-liquid, anda- B coexistencg We may choose to K="sc ™ ac
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: where ¢y and iy are the equilibrium profiles of the phase
— ¢ field fields connecting phasgs and v. The same formula for the
surface energies can also be obtained by a matched
asymptotic expansiof24]. For the solid-liquid interfaces,
e e L the surface energies are obtained by numerical integration.
______________________ For this purpose, it is more convenient to convert £§) to
a form without the gradients of the fields. Making use of the
. steady-state one-dimensional version of the equations of mo-
tion and the fact that is constant in equilibrium, we obtain
after some algebra

(@

-1.5 5 ; j di1_ . 5 ) 0| d
& ®) dx E[Wd,(ﬁx(ﬁo) + Wiy (dxipo)°] —&(f—,uc)- (23
Now one can integrate E@23) from —« to an arbitraryx
o S ——. and make use of the expression for the equilibrium concen-
tration profile and the bulk phase values to show that for the
e § solid-liquid interfaces
-05 1 1
N 5 (W (0xbo) >+ Wii( 9xip0)°]
-15 : : : = + ! 1+h + ! 1-h 5
20 10 0 10 20 =0(¢o) 2[ (¢0)19(0) 2[ (o) 145
x/W NG
FIG. 3. Equilibrium profiles fofa) a-L equilibrium and(b) 8-L + 5| =7 B2|[1+h(o)I[h(¢o) +1]. (24
equilibrium atT, (A=2.5). The composition is scaled according to A
Eq. (6).

Here the upper and lower signs are fotiquid and 3-liquid
equilibrium, respectively, and and B are defined in the

and(8). The appropriate value gf for a certain temperature Appendix. For the solid-solid interf_ace, the surface energy
is obtained from the common tangent construction. The twd’«s can be calculated exactly and is equal tg22V,,/3. _
resulting coupled ordinary differential equations were solved Rélated to tge surface energies are the two capillary
numerically using a Newton-Raphson method on a onel€ngthsdg anddg defined as

dimensional grid of spacingx. For simplicity, we assumed

W,=W,=W. Unless otherwise stated, all the results below dr= Yol (25)

are obtained foAx/W=0.8, which provides a good compro- 0 (Ac,)%(auloc)’

mise between computational efficiency and accuracy. The

resulting equilibrium profiles, centered at the origin, for thewhich can also be expressed in terms of the Gibbs-Thomson
phase fields and the concentration ferlL equilibrium and  constantd”, by
B-L equilibrium atT, are shown in Fig. 3. For solid-solid

can be used to eliminate the concentration field from Egs.

equilibrium, the interface profile ofy can be obtained ana- dr= r (26)
lytically becausep=+1 is a constant: " |m,JAC,”
These are two of the physical length scales that are relevant
¢0(x)=—tam‘( X ) (21) in pattern formation in solidification problems. In real sys-
\/§W tems, the capillary lengths are microscopic and much smaller

than all other physical length scales in the problem. Ideally,

In all cases, the concentration profiles are given by substitu"® would like tq adjust the capillary_ lengths in the modgl to
ing the equilibrium profilesp(x) and ¢o(x) obtained pre- match the physical length scale ratios by choosing suitable
viously into Eq.(20). model parameters. Sincgu/dc=N\, it follows thatdg de-

With the equilibrium interface profiles at hand, we canPends om\ as
calculate the surface energigg, , yg , andy,z, defined
as the excess Gibbs free energy per unit surface area. They dyoe 7”L.
are given by the expressions A

(27)

. Hence, to have small capillary lengths, one would like to
),W:f [Wi(5x¢o)2+Wi(0x¢o)2]dX, (22) increase\. Howgver,)\ cannot be chogen arbitrarily large for

—o two reasons. First, the surface tensions themselves depend
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1.45 - ‘ - - ' fix A=2.5 unless otherwise stated. This is a compromise
between having a large and a sufficient working tempera-

8 140! ture range in which our two-dimensional simulations can be

S carried out.

G To check Young's condition, we performed two-

® 135 ¢ dimensional simulations &, on a square grid witlAx/W

£ =0.8. The equilibrium angles around a trijunction were mea-

@ 130 | sured and found to be consistent with E8). to within a few

§ degrees. For a moving interface, there are also nonequilib-
S 125 | rium kinetic effects related to the attachment of atoms at the
iz interface and solute trapping. Since we are mostly interested
2 ' here in qualitative aspects of the growth morphologies, we
5 1207 b1 have not analyzed all these effects in detail. We checked,

however, by performing dynamical one-dimensional simula-
1.15 ‘ w ‘ ‘ : tions that nonequilibrium effects only lead to a deviation
-020 -015 -010 -005 000 005 010  fom |ocal equilibrium that does not exceed the Gibbs-

T Thomson effect caused by interface curvature in two-

. ) o _ dimensional simulations.
FIG. 4. Dimensionless solid-liquid surface energies versus tem-

perature for different. Circles, y, /W, squares,ys /W. Solid
lines, A\=0.5; dashed linesh\=1.5; and dash-dotted lines, IV. SIMULATIONS
=2.5.

For our simulations, we cast the equations of motion into

o o a dimensionless form. For simplicity, we tak&,=W,
weakly on\ for T#T,. As shown in Fig. 4, these variations _\y and 7,=7,=7. By defining the dimensionless vari-

amount to a few percent over the temperature range of intetyp|eg

est when\ is varied by a factor of 5. Secondly, the tempera-

ture range in which equilibrium interface solutions exist also

depends on\. More precisely, with a fixed value fox, the T=
a-liquid equilibrium solution does not exist TF is below a

certain value, and th@-liquid interface solution ceases to )

exist if T is above another value, becausdifs too low or ~ and the new variable
too high, the free energy density loses a minimunj @gual

to +1 or —1, respectively. We have estimated the range of
temperatures in which both solutions exist for differgnby
finding equilibrium solutions at different temperatures. The

results are shown in Fig. 5. We can see that this temperatugge equations of motion can be written in the form
range becomes narrower wherincreases. From now on, we

~ t
t=- (28
T

~ 1
n=ct+Aih(d)+ 5A1+h(H)]n(¥), (29

idp of
05 —=V2¢p— —, 30
= ¢ 7% (30)
00 | g ap o, of
—=VyYy——, 31
3 & P (31
-T- —0.5 (9C - - —
E=aV~[D(¢)VM], (32
-1.0 1 where
. TDL (33)
%00 10 2.0 3.0 4.0 5.0 W2

A
is the scaled diffusion coefficient of the impurity in the lig-

FIG. 5. T ithin which liqui i
G. 5. Temperature range within which botktliquid and uid, and

B-liquid equilibrium solutions exist, versus. (Circles: limit of
existence fore-liquid interface solution. Squares: limit of existence

for B-liquid solution) D(¢)=(1—¢)/2. (34)
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Instead of the concentration far from the interface, we may TABLE |. List of simulation parameters.
also userng, the volume fraction o formed in the solid, to
characterize the overall composition of the sample. The twoX 2.5 I7/1p 0.895
quantities are related by G 5.5838< 10 3 14/ 0.0934
3 Tp 5x10 3 dg/lp 2.620< 103
Co=(1775)Cput 5Cpp- (35 il 25119 102

In a typical directional solidification experiment, the

sample is pulled under a temperature grad@ntith a pull- o , ) ,

ing velocity v,. We define the dimensionless temperaturethe liquid side act... With all these implementations, we are
radient and velocity® and7, b able to carry out simulations with typical lengths in the

9 v, by growth direction equal to about ten times the diffusion

5 G length. For the results presented in this article, we chose a
G:WW' (36) pulling speed such as to have a diffusion length|gf
Me @ =200W. Other parameters and length scales are listed in
~ Table 1.
vp=vpm/W. (37)
Usually, thermal diffusion is orders of magnitude faster than V. RESULTS

the diffusion of the impurities, and hence we use the “frozen
temperature approximation” which assumes that the tem-
perature of the system adjusts instantaneously to the exter- Let us first concentrate on the spreading of ghghase on

nally imposed temperature gradient. Accordingly, directionalthe @ phase, starting from a single nucleus. Similarly to the

A. Dynamics of spreading

growth along thex axis is implemented by letting situation considered in Trivedi's model, the simulation is
started with a homogeneous composition in the liquid and a
T=To+G(x—v,t), (38)  planara-liquid interface. The lateral system sikds several
5 times the diffusion length. Nucleations are assumed to occur
whereT, is some reference temperature. heterogeneously at the solid-liquid interface when the tem-

There are five different physical length scales that controperature of the metastable interface reaches a certain under-
the microstructural pattern formation: the two capillary cooling with respect to the stable solid-liquid equilibrium.
lengthsdg and dg defined by Eq.(25), the two thermal The nucleation undercoolingsTy, (« on B3) andATﬁ (B on
lengths a), shown in Fig. 1, are assumed to be constant. Accord-

ingly, in our simulations a circular nucleus gfphase is put

Im,|AC, |m,AC, W at the solid-liquid interface on one side of the box when the
- - (39 liquid composition at the interface reaches the threshold for

nucleation fixed by the nucleation undercooling'ﬁ. The
and the diffusion length radius of the nucleus is taken to b&/6 slightly larger than
the critical radius for nucleation. Since we are interested here
D « in the deterministic spreading dynamics following a single

I v

TG |mJAC, B’

lp= vy 7 W. (40) nucleation event, further nucleation is prohibited. Multiple
P P nucleation events will be treated in Sec. V D.

Equations(30)-(32) are integrated numerically on a two- 10 characterize the dynamics of spreading, we recorded
dimensional grid. We user=1, AX=0.8, andAT=0.1 the position and velocity of the trijunction point. The side-

Zero-flux boundary conditions are applied to the two sideg"&ys velocityv, can be regarded as a measure of the spread-

that are parallel to the growth direction. There are several"d speed of ”?@9 p?ase_%fFlgures(ﬁ)l anq &b) show pllc_)ts of
features in the model that can be exploited in order to speeg.yﬁfvp vztersus t'm(.et. or different mtJ.C ela“‘;f‘ un_dercoo '”gsda?”d
up the computation. First, the phase fieldsand ¢ differ térrirsegf ?ﬁ?g;ﬁjs'%nnsﬁrh;%pec Ively. Time 1S measured in
significantly from =1 only in the interfacial region, and

hence we can avoid integrating EG30) and(31) away from | D

the interface. In addition, Eq:32) needs to be integrated tp=—"=—. (41)
only in the liquid. Secondly, the concentration field decays Up vg

exponentially in the growth direction and varies only slowly

in space in the liquid region far ahead of the interface.Two very different regimes of spreading can be clearly dis-
Hence, we can use a coarser and coarser grid as we motiaguished. Immediately after the nucleation, the spreading
away from the interfacial region. Thirdly, in order to simu- velocity is almost independent of the composition, but
late a semi-infinite system in the growth direction, we takestrongly depends on the nucleation undercooling. The
advantage of the fact that all the fields remain unchanged igrowth of the nucleus is influenced only by its immediate
the solid in the one-sided model. Whenever the solid-liquidsurroundings. On the length scale of the nucleus, which is
interface has advanced one lattice spacing, we pull the sysauch smaller than the diffusion length, the impurity concen-
tem back by one unit and keep the composition at the end afation can be considered constant and is determined only by
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FIG. 7. Scaled temperatures at the trijunction and at the solid-

liquid interface on both sides of the boxA'Tﬁ=0.031 29, 74
=0.375)

namics, and the spreading velocities for equal undercooling
but differentc., start to differ[Fig. 6(b)]. After a complicated
transient, the details of which depend on the choice of pa-
rametersy, becomes a linear function of time, which means
a constant lateral acceleration of the trijunction. This accel-
1 eration is independent of the nucleation undercooling or the
history of the system, but depends on the composition. An
explanation of this finding can be deduced from Fig. 7,
which shows the interface temperatures on the sides of the
box and at the trijunction as functions of time. After the
initial transient, the temperature at the trijunction just follows
the temperature on the side. This implies that the-liquid
interface is almost planar up to the trijunction. We can also
see that during the whole time of the simulation thiquid
interface is still relaxing toward its steady state belGy.
Hence, the undercooling that drives tBephase to spread is
increasing.
In the late stages of spreading, the lateral diffusion length
D/v, becomes much smaller than the solute boundary layer,
. ‘ ‘ , and is comparable to or even smaller than the tip of the
0 0.02 004 006 0.08 0.1 spreading finger. Therefore, the spreading speed should be a
-T function of local supersaturation only. To check this assump-
tion, we show in Fig. &) the same velocity curves as before,
but now plotted against the undercooling of the planar
a-liquid interface with respect to the peritectic temperature

—T. Since in our phase diagram the liquidus curves are
T,. Circles, 7,=0.375, ATA=0.01878; squares;,=0.375, straight Iines', this undercooling is simply proportipnal to the
ATE—0.031 29 diamondss.—0.375 ATf—0.04381 upward supersaturatlon._'l'_he curves all qollapse onto a single master
N ’ 1B PN o P curve after the initial transient, i.e., starting from the time
triangles, 7,=0.25, AT{=0.03129; lefward triangles,n;  \yhen the interface ahead of the trijunction has become flat.
=0.3125, AT{=0.03129. The dashed line ifb) is for 7z  This master curve is not linear, and does not smoothly ex-
=0.1875,AT{=0.031 29, where an island is formed. trapolate to zero. We did not attempt to calculate it theoreti-
5 cally. We expect that its detailed form should depend on the
the nucleation undercooling. A highArTﬁ is equivalentto a characteristics of the trijunction, and in particular on the
higher supersaturation, and hence a higher growth speed. angles between the different interfaces. More theoretical and
At later times, the modifications of the diffusion field in- numerical work would be needed to elucidate in detail the
duced by the growing3 phase influence the spreading dy- role of the various material parameters. Remarkably, similar

FIG. 6. Plots ofv, /v, (a) versus time for constant volume frac-
tion and varying nucleation undercoolingp) versus time for con-
stant nucleation undercooling and varying volume fraction, @pd

versus scaled undercoolingT of the a- L-interface with respect to
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observations have been very recently reported in experiment  (a) (b)
on a transparent organic eutectic al[®r] during spreading

of the secondary phase on a planar interface of primary
phase. The spreading speed of the secondary phase show
an approximately linear increase with time, and the data
could also reasonably well be rescaled onto an analogou
master curve.

Since thea-liquid interface far ahead of the trijunction
stays fairly planar before the arrival of tliephase, the time
dependence of the temperature on theside can be well
described by the Warren-Langer approximati@b]. The
rate of change of the supersaturation is solely determined b
the compositiorc,., which explains why the final slope of
the curves in Figs. @ and &b) depends ort., but not on
the nucleation undercooling.

A completely different behavior is observed when the
composition is sufficiently low. As shown in Fig.(l§
(dashed ling the initial spreading speed is the same as for
the other runs. However, at later times, the spreading slow:
down and the trijunction point turns around such that
becomes negative. Instead of a band, an isolated islaygd of
phase is formed. This phenomenon will be addressed in de
tail in Sec. V B below.

In the final regime of spreading, when the lateral speed
becomes much larger than the pulling speed, the lateral dif-
fusion lengthD, /v, becomes comparable to the radii of cur-
vature close to the trijunction point. In free growth, such
conditions are reached only at very large solidification o
speeds. Under these circumstances, it is clear that the phass=— Growth Direction
field model no longer reflects quantitatively the sharp-
interface equations, since it contains corrective terms due t
the finite width of the interface. For instance, we observed

FIG. 8. Spreading of a singl@ nucleus over thex phase with

8?5:0.025 047,=0.3125. (@) Island formation at_/l=0.512;

iolati fy \ diti he trii . int. M %b) band formation at./| ,=0.64. Time increases from top to bot-
violation of Young'’s condition at the trijunction point. More om. (Dark region,a phase: light regiond phase; unshaded region,

precisely, the angles between the interfaces, obtained by taffg ,ig. The isoconcentration lines in the liquid are evenly spaced
ing the tangent vectors to the=0 andy=0 level curves at  j, ¢

the trijunction, are still consistent with local equilibrium, but
the solid-solid interface is highly curved on a length scale . ) )
comparable to the widthV of the diffuse interface. This is down, and the trijunction point may even turn around, such
due to the fact that the diffusivity varies smoothly within the thatv, becomes negative. As a result, the trijunction travels
diffuse interface, and hence the part of the solid-solid interback to the wall where it originated, and an isolated island of
face near to the trijunction is still able to move. As a result,8 phase, or partial band, is formed. It hence appears that
the angles between the interfaces, seen on a macroscogiemplete spreading is easier to achieve in larger systems, a
scale, differ from the local equilibrium angles. For the pur-quite counterintuitive result. Figurege and 8b) show time
pose of the present study, where we are mainly interested iseries of typical snapshot pictures for the formation of an
the qualitative features of the microstructures, we did notsland and a band, respectively. The scales are the same on
investigate this effect quantitatively. Let us remark, howeverpoth axes and in both figures. Isoconcentration lines in the
that such effects may not be simply an artifact of the phaseliquid are also shown. It can be seen that a lateral concentra-
field model, but may have a physical significance for hightion gradient builds up in the liquid. This concentration gra-
growth speeds if the relaxation of the trijunction toward localdient plays an important role in the interpretation of the mor-
equilibrium occurs on a time scale comparable to the time ophological transition from islands to bands and will be
diffusion through the trijunction region. discussed below.
To study more systematically the conditions for the for-
N mation of islands, we performed simulations with various
B. Morphology transition lateral system sizels and compositions., , with the follow-
The results of the preceding section were obtained foing results.

systems with lateral extensions of several times the diffusion (1) At a fixed ATE, there exists a critical compositiarf
length. For some sets of parameters, a surprising event osuch that ifc,,<c* the 8 phase always forms islands. This
curs when the system size is reduced while all other paransritical composition decreases as the nucleation undercooling
eters are kept constant. After some time, the spreading slowscreases.

031504-9



TAK SHING LO, ALAIN KARMA, AND MATHIS PLAPP PHYSICAL REVIEW E 63 031504

(a) 3 — - - hand, impurities diffuse laterally through the system on a
A 4 e time scale oL.?/D, . If L/vs<L?D,, thep phase is able to

® Band spread over thex phase before a significant impurity back-
A Island | flow can occur. If the opposite is true, the impurities have
enough time to diffuse and the growth of the phase is
slowed down. Hence, the critical system size is given by

L,

N \: Le~—. (42

0 :
(b) \ Another way to interpret the above criterion is to note that

the “diffusion speed,” which is roughly the speed of the
S E?;‘gd impurities diffusing laterally through the system, is given by
1 D /L. If the diffusion speed is smaller than,, spreading
occurs, and Eq(42) follows immediately.
° Clearly, the above argument is only qualitative. We have
° . assumed a constant lateral spreading speed in(42y, al-
though Fig. 6 shows that the spreading speed varies with
N time, and hence we can give no explicit expressiorvfoas
f ) ~..____® . a function of composition and nucleation undercooling.
0.15 0.95 035 045 0.55 However, we can see from Fig. 6 that, for any given time,
the instantaneous spreading speed increases with increasing
s nucleation undercooling and increasing volume fractiog of
=g_ =g  phase. This observation, together with E4p), allows us to
_ O'_ch)gi ;)é.Morphology map a@) ATy=0.02504 andb) ATk | ierstand qualitatively the shape of the curleéc..) in
Fig. 9. In addition, this criterion allows understanding of the
striking finding than spreading is easier in large systems that
in small ones.

»
»

Ui,

ddddddd dd

(2) At a fixed ATﬁ and if c,>c*, there exists a critical
lateral system size (c.) such that if the lateral system size
L>L,. the B phase spreads completely and forms bands,
whereas ;on_< L. it forms islandsL . decreases when either C. Banding and island formation
C.. Of ATy increases. So far, we have concentrated on how a singlaucleus
. (3) When 9°°<C*’ such that thes phase alw_ays forms spreads on ther phase. It is natural to ask what happens if
!slands, the final shap@nd also the sigeof th? |s]ands 'S" renucleation is allowed. This is a complicated problem since
mde_pendent oL whenL IS larger than a certain size. nucleation is an inherently stochastic phenomenon, which

. Figure 9 shows .the final morphology of the system forcannot be consistently treated within our deterministic
d|fferen.t .. (or equwglently different) .and 'for Q|ﬁerent model. However, we can try to gain some insight by incor-
nucleation undercool_mgs. The dashg_d lines in F'gg) and porating nucleation phenomenologically. We will proceed in
9(b) represent an estimate for the critical system &ize.,)

for th ition f band slands. | b h two steps. First, we treat repeated nucleation in small
or the transition from bands tol ISlands. tcan be seen t a'§amples by deterministic rules to make contact with the re-
both L. andc* are smaller for higheATE .

_ r : cent experiments in the Sn-Cd alloy systéb8]. Then, in
The existence of the critical sidg, can be understood by the next section, we investigate the influence of multiple sto-

noticing that bothw and 8 phases have to reject impurities in chastic nucleations on the pattern formation dynamics in
order to grow, but the concentration jump at thdiquid large systems.
interface is larger than that at tifeliquid interface. Sinces For solidification in small systems, it can be assumed that
is the stable phase beloVy,, there exists a driving force for nucleation occurs predominantly at the container walls close
the B8 phase to spread. On the other handpagjects fewer to the solid-liquid interface. The density of nuclei and the
impurities thana, the impurity concentration in front of the nucleation rate are very rapidly varying functions of the
B phase rapidly decreases after the nucleation. This createscamposition. Therefore, it seems reasonable to assume that a
lateral concentration gradient and hence an impurity flownucleus will form as soon as the concentration in the liquid
from the« to the B side as can be clearly seen in Fig. 8. Thisexceeds the threshold corresponding to the nucleation under-
lateral impurity backflow will accelerate the growth@fand  cooling. Accordingly, we incorporate repeated nucleation by
slow down the growth of3 and hence there is a competition the following rules(the nucleation ofx is handled like the
between the two phases. nucleation ofB before, by placing a small circular nucleus at
To be more precise, we can consider the following scalinghe solid-liquid interface
argument. Let us assume for simplicity a constant spreading (1) A nucleus of the new phase is placed at one side of the
speedv for the B8 phase. Then the time required by tBe container as soon as the undercooling of the interface ex-
phase to spread across the systeniLfs;. On the other ceeds the nucleation undercooling. If both sides of the box
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©) . " = ] FIG. 11. Sketch of a critical nucleus in the spherical cap model

for heterogeneous nucleation.

(d) m D. Nucleation controlled microstructures in spatially extended

systems

Until now, we have mainly focused on the microstruc-
() o o e e e tures formed in small samples. It is interesting to ask what
kinds of structure are to be expected in large samples in the
absence of convection. This situation could be achieved ei-

FIG. 10. Microstructures obtained from simulation fay ATg ~ ther in quasi-two-dimensional thin samples, or in a micro-
=0.13565, ATf=0.04381, L/1,=0.512, 7,=0.125, (b) AT} gravity environment. To model the miprostructure formatipn,
=0.17440, ATE=0.056 33, L/1p=0.512, 75=0.125, (©) ATE Iarge_zr scale computations were carried ou_t. However, in a
—0.02504, L/ly=0512, 7,=0.05, (d) ATE=0.03129, L/l spatially extended system, multiple nucleations are unavoid-

PP CE N kg ' P able and must be incorporated in a way that is consistent
=0.512, 7,=0.075 and(e) ATy=0.01938, AT\=0.08129, i, the predictions of classical nucleation theory. We chose
L/I5=0.128, 775=0.4375.(Dark region,« phase; light regiong to extend our model by i . he eff ' f ltio]
phase, d o y incorporating the effects of multiple

nucleation in a phenomenological manner.

For the nucleation of th@ phase on a planar front (the
reach the threshold at the same time, one side is chosen @me arguments also apply to the nucleationxobn B),
random. classical nucleation theory predicts the nucleation rate

(2) Once a germ has nucleated, further nucleation of the
same phase is prohibited until the germ has either completely | =1, e AF /keT, (43
spread across the system or completed the formation of an
island. wherel is a constant prefactdwith dimension equal to the

We consider now the two nucleation undercoolings agiumber of nucleations per unit volume per unit tinend
free parameters, and study different cases. When hath AF* is the activation energy for he_terogeneOL_Js nucleation.
and ATE are large enough such that the newly nucleated'\SSuming that the critical nucleus is a sphirlgal cap on a
phase spreads completely before the original phase is able p&anar §ubstr_ateéthe spherical cap queIAF IS given,
renucleate again, banded structures are obtained. For rgspectwely, in two and three dimensions by
smallerATﬁ, the B phase does not spread completely, but
forms an island. Thex phase overtakes thg phase and . ,
continues to grow until the nucleation threshold {8ris AF* = AFg  0=(1/2)sin20
reached again. The islands @f phase form alternately on - yf;,_ 16m(2+ cos)(1—cosh)?
each side. This is a result of the history of the system: as a > X 12 ,
result of the formation of the previous island, the concentra- AFg
tion of impurities is lower on the side where the last island
occurred, and hence nucleation gfis favored at the other
side. Examples of these banded and island structures
shown in Fig. 10a) to Fig. 10d). The scales on both axes in
these figures are the same, but Figel®as a different scale
from Figs. 1@a)—(d). This last picture was obtained by a
simulation at much smallek Ty, and the lateral size of the
system is smaller. In this case, an oscillatory structure is

obtained which tends to approach a coupled growth SteadXssuming that the system is locally in thermodynamic equi-

state after a complicated transient. L . . ;
These results are in good qualitative agreement with mil'b”um' it can be shown thaFs is proportional to T

crostructures obtained in small samples of Sn-Cd dli}. — Tp) [26], such that for a quasi-two-dimensional system the
In the experiments, islands tend to form always on the samQUCIeat'on rate fo3 on & can be written as

side of the sample. We believe that this is due to a slight oy
lateral temperature gradient across the sample, which is al- _ lop eXH —A/(T—=Tp)"] if T<T,
ways present in experiments. 0 if T=T,,

Growth Direction

stL 6? 2D

3D,

a\%hereAFB is the difference between the bulk free energy of
the B phase and of the liquid phase. The contact armglas
shown schematically in Fig. 11, is determined by the balance
of surface tensions parallel to the substrate,

YaL = Yapt+ ¥pL COSO. (45)

(46)
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where A is a constant, andl,, has now the dimension of !
number of nucleations per unit time and per unit length of |
the interface. A similar expression withi=0 whenT<T, w, large !
holds fora nucleating on3. The 3D form ofAF* is used in o I
deriving Eq.(46) since, in practice, the size of a nucleus is ';'
still much smaller than the thickness of a thin sample. Equa- !
tion (46) determines the local nucleation rate and hence the !
probability per unit time of a nucleus forming as a function !
of the local temperature at the solid-liquid interface. |
Unfortunately, both experimental and theoretical esti- |

mates of the free energy barrier and the kinetic prefactor are T '
scarce in the context of heterogeneous nucleation, since the ;
actual values may depend on complicated details of the in- /i

terfacial structure. Since, in the present study, we focus on /T—T

. =Ty [T-T |

morphological aspects of the large scale structure, we de- P

cided to treat the two quantities as fre? pa_lrame'gers. More- FIG. 12. Schematic plot of the dimensionless nucleation rate
over, V\{e_w_ant to compare the S_tOChaSt'Q simulations to thﬁ/(T) versus temperature for two different choiceswgf and A.
deterministic runs of the preceding sections. Consequently,

we may eliminate one of those two parameters by the reThjs implies that in the stochastic algorithm we must choose
quirement of recovering the rules used previously. That is, in

the deterministic simulations a nucleus was put at the solid- W(TE)=wq exq—A/(Tﬁ—Tp)2]= 1. (50
liquid interface when it reached the predetermined nucleation

undercooling. In the stochastic runs, nucleation should thereSiven this condition, there is only one remaining free param-
fore occur with probability 1 for the same interface tempera-eter; we choose the dimensionless kinetic prefastprThis

ture. This condition will lead to a relation between the pref-parameter controls the temperature range over which nucle-
actor and the energy barrier in the nucleation rate. ations occur. Indeedw(T) is a function that rapidly in-

To proceed, let us first specify how we treat nucleation increases in a narrow temperature range ardiﬁwdlncreasing

the simulation algorithm. The interface is scanned at a reguw, andA simultaneously while respecting the constraint Eq.
lar time intervalAty, and nucleation is attempted at points (50), the rise of the nucleation rates becomes sharper, as
regularly spaced by a distandesy along the interface. The shown schematically in Fig. 12.

nucleation rate may be rewritten as Now consider ane-liquid interface during its transient,
when the temperature at the interface is decreasing from

w, small

| = w(T) 47) aboveT, to its steady-state temperature. If the temperature
AtyAsy’ range over which the nucleation rate increases significantly
is narrow, all nucleation events will occur almost at the same
where time when the interfacial temperature coincides With As

P a result, the mean separation between the nuclei will be
— Wo X —A/(T=Tp)"] if T<T, (48) small. On the other hand, ¥, is small, nuclei appear with a
0 if T=T, broader spread in interfacial temperature, and the mean sepa-
) ) ) ] ) ration between the nuclei will be larger. Since the mean
is a dimensionless function of the interface temperature. Akenaration between the nuclei plays a similar role as the sys-
each test p0|.nt, a nuclgys is generated Wlth. prpbablllty 1 item size in a small sample experiment, we might expect a
w>1, and with probabilityw otherwise. That is, iv<<1, &  morphology transition from bands to islands &g is in-
random numbeg uniformly distributed between 0 and 1 is ¢reased.
drawn, and a nucleus is generatectifw. As before, the Figure 13 shows the microstructures obtained in simula-
nucleus is spherical and has a size ¥/.6A possible draw-  tions for smallw,, ranging from 5<10° to 5x1CP. The
back of the procedure outlined above is that the actual nuclgateral system size is about twice the diffusion length, and we
ation rate depends on the values chosenMfg andAsy.  yse periodic boundary conditions in the direction perpen-
However, it is reasonable to assume that the microstructur§cylar to the temperature gradient. The lateral spreading of
should not depend too sensitively on the choice of thes@nultiple nuclei leads to a jagged morphology. Each
parameters as long as their values are much smaller than “Weshaped site in the figures indicates a nucleation etaint
time and length scales of the pattern formation Process. ther 8 ona or @ on B). A transition from irregular banded
Now we can relate the prefactor and the barrier in thesiryctures to islands can be observedvgsincreases. Note,
nucleation rate. In the preceding sections, nuclei were intropgwever, that nucleation events occur in bursts, leading to a
duced deterministi_cally when the_ nucleation undercoolingbpatim periodicity along the growth direction that can be
was reached, that is, at a nucleation temperature clearly distinguished in Fig. 18). This means that there is
ATE still a “banding_ cycle,” now c_onsisting of layers of a two-
Tﬁsz— N (49) phase compos_lte structufparticulate structurg¢ and layers
1-mg/m, of pure & matrix.
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[ —

(a) (b) (©) (a)

FIG. 13. Microstructures obtained from simulations with sto-  FIG. 14. Microstructures obtained from simulations with sto-
chastic nucleation events far/lp=2.048, 7,=0.25, ATg=ATf  chastic nucleation eventga) wo=5x10", (b) wo=5x10%, (c)
=0.03129, and(@ wy=5X%10°, (b) wy=5%10" (c) wy=5 wo=5X10%; other parameters as in Fig. 13. The unshaded region
X 10°. Growth is from bottom to top; dark regiona, phase; light  is the liquid.

regions, phase.
VI. SUMMARY AND CONCLUSIONS

The values forw, in Fig. 13 are somewhat small. The = We have developed a phase-field model to investigate a
attempt ratewy should be related to the ratg in Eq. (43), class of banded microstructures that form during the direc-
which is typically about 1% nuclei/cn? s for heterogeneous tional solidification of peritectic alloys under purely diffusive
nucleation in metallic systend.1]. Hence we investigated growth conditions. We focused on a regime of large thermal
the microstructures formed with larger valuesagf, ranging  gradients and low pulling speeds where both phases are mor-
from 5x 10 to 5x10*% In this range, we always obtain phologically stable and the interface dynamics is controlled
island structures that look qualitatively similétig. 14, and by a subtle interplay between the growth and nucleation of
not too different from Fig. 1&). This implies that the mi- two competing solid phases, rather than by the morphologi-
crostructures obtained with multiple nucleation events areal instability of one phase. We restricted our attention to a
not very sensitive tav, whenwy, is larger than some critical generic peritectic phase diagram that simplified both the
value. Hence we would expect predominantly island strucmodels and the computations, but our approach is in prin-
tures in spatially extended systems. ciple flexible enough to be extended to phase diagrams of

The last statement, however, is valid only for the quitespecific materials.
restrictive assumptions made in our model. Most impor- The two-dimensional simulations of this model have shed
tantly, we have assumed that the probability of nucleatioright on three main aspects of banding: the transition from
depends only on the composition in the liquid, and not on théslands to bands that has been observed in narrow samples
local geometry of the interface. This neglects the presence ofhere convection is suppressd], the associated dynami-
grain boundaries and impuritigbubbles, inclusionswhich  cal spreading of one phase onto the other, and the type of
can considerably enhance nucleation. Such heterogeneitisructures that one would expect to form in wide samples
broaden the distribution of the nucleation rate as a functiorunder purely diffusive growth conditions that are not pres-
of temperature, and would hence favor bands. The evolutiogntly accessible in an earth-based laboratory, at least for the
of the grain structure could in principle be modeled by in-alloys investigated to date.
cluding the local crystalline orientation as an additional order We have shown that the transition from islands to bands
parameter. An interesting perspective is that the interplagan be understood in terms of a competition between the
between nucleation at grain boundaries and spreading mighateral spreading of3 on « and the diffusive backflow of
select a certain grain size, since for small grains a spreadingjected impurities fromx to 8. This competition leads to
phase can engulf and hence “heal” grain boundariesthe surprising result that bands tend to form more easily in
whereas for large grains nucleation at the solid-liquid interwider samples, in qualitative agreement with recent experi-
face (as modeled in our simulationsnay occur and lead to ments in the Sn-Cd alloy carried out in small samples in
the formation of new grains. Such a study, however, isorder to suppress convectifhi3]. The critical system sizke,
largely beyond the scope of this article. at which this transition occurs depends on the nucleation
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This acceleration originates from an increase with time of the APPENDIX: RESULTS OF THE COMMON TANGENT

local supersaturatiofdriving force for spreadingassociated CONSTRUCTION
with the relaxation of the planar parent phase ahead of the )
trijunction to its steady state beloVy,, together with a direct The common tangent construction allows one to deter-

relationship between the instantaneous speed of the trijunéDine the equilibrium composition for two-phase equilibrium

tion and this driving force that depends on the material propi0r 9iven bulk free energies, of the two phases. For two-

erties, but not on the history or the overall composition of the?Nase equilibrium, the bulk phases must have equal chemical

sample. Moreover, the relative angles between phase boun gte_n'uals '“:dfvl.dc and .grand potentiald}=f,— uc.

aries at the trijunction during rapid spreading depart signifi- olymg the_resultlng gqqatlpns fo.r'ou.r model bulk free en-

cantly from those prescribed by Young’s condition, indicat-°9's W€ find for solid-liquid equilibrium

ing a strong departure from local equilibrium. Both 1

predictions might be experimentally testable in transparent (Bli582>

organic eutectic systems that exhibit similar spreading tran- =T+ A, (A1)

sients before coupled growth is establishad)].

The formation of multiple nuclei in wide sampled. (

>L.) adds a stochastic element to the interface dynamics

that renders the range of possible patterns even richer. One (
a,B_

1
can nonetheless distinguish two basic types of structure that 2
can be understood within the framework of the single island Cs =T 7 AT Ae (A2)
to band transition in narrow samplesL.). The first is a ( -
discrete banded structure made up of separate jagged bands 2
that span the whole width of the sample. The second is 3
particulatebanded structure made up of approximate rows of
particles (islandg of the peritectic phase embedded in the
matrix of the parent phase. The bandpdrticulate structure B,
is naturally selected if the mean distance between nuclei is ch=A——A1—A2, (A3)
larger (smalley than the critical sample widtlh. for the 2
island-band transition, and, moreover, simulations reveal that B
the particulate structure is preferred if nucleation is assumed Cész_z —A+A,. (A4)
to follow a classical nucleation law. Even though we mod- Az
eled patterns in wide samples with such a law, we expect th
transition from a discrete to a particulate banded structure t

be generally governed by the mean distance between nuclei

he upper(lower) sign is for thea (8) phase.
For solid-solid equilibrium, we get

or convenience, we define

even if other nucleation mechanisrtsich as wall-induced A=(Ar*3A;) (AS)
nucleation and nucleations at grain boundaray a domi-
nant role. Both types of structure could conceivably coexisf”lnd
in the same sample if nucleation conditions change during — N
B=(B1*=3B>) (AB)

growth.

There are a number of possible extensions of the presenth h f ) sign is for th h
study. One is to investigate the patterns that form for a some?"ere the uppetiowen sign Is for thea () phase. :
In order to relate the parameters in our model to a physi-

what larger range of pulling speeds where the parent phase is :
. Y ... cal system, let us write

morphologically unstable, but the peritectic phase is still lin-

early stable. Another is to incorporate the influence of con-

vection in a fully consistent way to make contact with ex- B1=But+ BT, (A7)
periments over a wider range of sample sizes, which is now 5
possible within a phase-field conteg28,29. B,=B,;+BoxsT. (A8)
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Here, ¢ andT are the scaled composition and temperature, TABLE Il. Parameters for our model peritectic system.

respectively, defined in the text. Lé&tC, and m, be the

—1
concentration jump at the solid-liquid interface and the liqui- Cp 38.2 WtZA’ Ay 3.30745¢ 1071
dus slope of phase, respectively, aff,. Letr be the ratio Cpa 22.1 Wto/" A 3.3850% 10 .
AC4/AC,; then the parameterd;, A,, By, By, By, Cop 33.0 wt% Bu —2.56790<10
Hiaa i i —6.71865 K/wt % B —2.6281810° 3
andB,, are related to these quantities in the phase diagram M« 21
By, 0.0
1
A1:Z(1+r), (A9)
ma
Bio=—=|1+r—], Al13
1 12 4 mﬁ) ( )
Ax=5(1-r), (A10)
2 1
B ———(1—rﬁ) (A14)
22— .
1 1 2 mg
Biy==(1+r)r——(1+r)|, (A11) ) ) . . )
4 4 In order to have vertical solid-solid coexistence lines, we
1 1 have to choose the parameters such as to mBgkevanish.
By==(1—1)|r—=(1+1)/, (A12) The parameters for our model peritectic system are listed in
2 4 Table II.
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